Skip to main content
Log in

Effects of tungsten fiber on failure mode of zr-based bulk metallic glassy composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The authors systematically investigated the effects of tungsten fiber on failure mode as well as deformation and fracture mechanisms in tungsten fiber-reinforced Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glassy composite under uniaxial compression at room and high temperatures. At room temperature, the failure mode of the composite changes from shear fracture to longitudinal splitting failure with increasing fiber volume fraction. Similar to the observations in monolithic metallic glasses, the shear fracture angle of the composite is approximately equal to 39∼40 deg, indicating that the Mohr-Coulomb criterion is suitable to give the critical shear fracture condition of the composite. When the compression tests were performed below the glass transition temperature of Zr41.25Ti13.75Ni10Cu12.5Be22.5 metallic glassT g, the deformation behavior of the composite strongly depends on the strain rates and the test temperature, which is quite similar to the deformation behavior of monolithic metallic glasses in the supercooled liquid region. The corresponding failure mode of the composite changes from shear or splitting fracture to bending failure with decreasing strain rate or increasing test temperature. The failure modes at the temperature nearT g are mainly controlled by the metallic glass matrix due to the decrease in its viscosity at high temperature. Based on these multiple failure modes, the effects of test temperature and tungsten fiber volume fraction on deformation and fracture mechanisms are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue:Acta Mater., 2000, vol. 48, pp. 279–306.

    Article  CAS  Google Scholar 

  2. W.L. Johnson:MRS Bull., 1999, vol. 24, pp. 42–56.

    CAS  Google Scholar 

  3. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari:Acta Mater., 2004, vol. 52, pp. 1631–37.

    Article  CAS  Google Scholar 

  4. P. Lowhaphandu and J.J. Lewandowski:Scripta Mater., 1998, vol. 38, pp. 1811–17.

    Article  CAS  Google Scholar 

  5. J.H. Schneibel, J.A. Horton, and P.R. Munroe:Metall. Mater. Trans., 2001, vol. 32A, pp. 2819–25.

    CAS  Google Scholar 

  6. C.J. Gilbert, V. Schroeder, and R.O. Ritchie:Metall. Mater. Trans., 1999, vol. 30A, pp. 1739–53.

    CAS  Google Scholar 

  7. K.M. Flores, W.L. Johnson, and R.H. Dauskardt:Scripta Mater., 2003, vol. 49, pp. 1181–87.

    Article  CAS  Google Scholar 

  8. H. Zhang, Z.G. Wang, K.Q. Qiu, Q.S. Zang, and H.F. Zhang:Mater. Sci. Eng, 2003, vol. A356, pp. 173–80.

    CAS  Google Scholar 

  9. P.A. Hess and R.H. Dauskardt:Acta Mater., 2004, vol. 52, pp. 3525–33.

    Article  CAS  Google Scholar 

  10. A. Inoue, T. Zhang, and T. Masumoto:Mater. Trans. JIM, 1989, vol. 30, pp. 965–72.

    CAS  Google Scholar 

  11. A. Peker and W.L. Johnson:Appl. Phys. Lett., 1993, vol. 63, pp. 2342–44.

    Article  Google Scholar 

  12. A.L. Greer:Science, 1995, vol. 267, pp. 1947–53.

    Article  CAS  Google Scholar 

  13. C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue:Metall. Mater. Trans., 1998, vol. 29A, pp. 1811–20.

    CAS  Google Scholar 

  14. C.C. Hays, C.P. Kim, and W.L. Johnson:Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.

    Article  CAS  Google Scholar 

  15. C.C. Hays, C.P. Kim, and W.L. Johnson:Mater. Sci. Eng., 2001, vol. A304–306, pp. 650–55.

    Google Scholar 

  16. G. He, J. Eckert, W. Löser, and L. Schultz:Nat. Mater., 2003, vol. 2, pp. 33–37.

    Article  CAS  Google Scholar 

  17. G. He, W. Löser, and J. Eckert:Acta Mater., 2003, vol. 51, pp. 5223–34.

    Article  CAS  Google Scholar 

  18. G. He, J. Eckert, W. Löser, and M. Hagiwara:Acta Mater., 2004, vol. 52, pp. 3035–46.

    Article  CAS  Google Scholar 

  19. Z.F. Zhang, G. He, H. Zhang, and J. Eckert:Scripta Mater., 2005, vol. 52, pp. 945–49.

    Article  CAS  Google Scholar 

  20. H. Zhang, X.F. Pan, Z.F. Zhang, J. Das, K.B. Kim, C. Müller, F. Baier, M. Kusy, A. Gebert, G. He, and J. Eckert:Z. Metallkd., 2005, vol. 96, pp. 675–80.

    CAS  Google Scholar 

  21. R.D. Conner, R.B. Dandliker, and W.L. Johnson:Acta Mater., 1998, vol. 46, pp. 6089–102.

    Article  CAS  Google Scholar 

  22. H. Choi-Yim, J. Schroers, and W.L. Johnson:Appl. Phys. Lett., 2002, vol. 80, pp. 1906–08.

    Article  CAS  Google Scholar 

  23. R.D. Conner, R.B. Dandliker, V. Scruggs, and W.L. Johnson:Int. J. Impact Eng., 2000, vol. 24, pp. 435–44.

    Article  Google Scholar 

  24. H. Choi-Yim, R.D. Conner, F. Szuecs, and W.L. Johnson:Scripta Mater., 2001, vol. 45, pp. 1039–45.

    Article  CAS  Google Scholar 

  25. R.B. Dandliker, R.D. Conner, and W.L. Johnson:J. Mater. Res., 1998, vol. 13, pp. 2896–901.

    CAS  Google Scholar 

  26. K.Q. Qiu, A.M. Wang, H.F. Zhang, B.Z. Ding, and Z.Q. Hu:Intermetallics, 2002, vol. 10, pp. 1283–88.

    Article  CAS  Google Scholar 

  27. H.J. Leamy, H.S. Chen, and T.T. Wang:Metall. Trans, 1972, vol. 3, pp. 699–708.

    CAS  Google Scholar 

  28. P.E. Donovan:Acta Metall., 1989, vol. 37, pp. 445–56.

    Article  CAS  Google Scholar 

  29. W.J. Wright, R. Saha, and W.D. Nix:Mater. Trans., 2001, vol. 42, pp. 642–49.

    Article  CAS  Google Scholar 

  30. Z.F. Zhang, J. Eckert, and L. Schultz:Acta Mater., (2003), vol. 51, pp. 1167–79.

    Article  CAS  Google Scholar 

  31. Z.F. Zhang, G. He, J. Eckert, and L. Schultz:Phys Rev. Lett., 2003, vol. 91, pp. 045505.

    Article  CAS  Google Scholar 

  32. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, M. Freels, Y. Yokoyama, M.L. Benson, B.A. Green, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks:Intermetallics, 2004, vol. 12, pp. 1219–27.

    CAS  Google Scholar 

  33. Z.F. Zhang, G. He, and J. Eckert:Philos. Mag., 2005, vol. 85, pp. 897–915.

    Article  CAS  Google Scholar 

  34. W.H. Wang, Y.X. Zhuang, M.X. Pan, and Y.S. Yao:J. Appl. Phys., 2000, vol. 88, pp. 3914–18.

    Article  CAS  Google Scholar 

  35. K.S. Lee, T.K. Ha, S. Ahn, and Y.W. Chang:J. Non-Crystal. Solid, 2003, vol. 317, pp. 193–99.

    Article  CAS  Google Scholar 

  36. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto:Appl. Phys. Lett., 1996, vol. 69, pp. 1208–10.

    Article  CAS  Google Scholar 

  37. M. Heilmaier:J. Mater. Proc. Tech, 2001, vol. 117, pp. 374–80.

    Article  CAS  Google Scholar 

  38. G. He, Z.F. Zhang, W. Löser, J. Eckert, and L. Schultz:Acta Mater., 2003, vol. 51, pp. 2383–95.

    Article  CAS  Google Scholar 

  39. P. Lowhaphandu, L.A. Ludrosky, S.L. Montgomery, and J.J. Lewandowski:Intermetallics, 2000, vol. 8, pp. 487–92.

    Article  CAS  Google Scholar 

  40. C.A. Schuh and A.C. Lund:Nat. Mater., 2003, vol. 2, pp. 449–52.

    Article  CAS  Google Scholar 

  41. A.C. Lund and C.A. Schuh:Intermetallics, 2004, vol. 12, pp. 1159–65.

    Article  CAS  Google Scholar 

  42. Z.F. Zhang, D. Brunner, C. Scheu, and M. Rühle:Z. Metallkd, 2005, vol. 96, pp. 62–70.

    CAS  Google Scholar 

  43. I.J. Jordaan:Eng. Fract. Mech, 2001, vol. 68, pp. 1923–60.

    Article  Google Scholar 

  44. J.N. Goodier:J. Appl. Mech., 1933, vol. 1, pp. 39–44.

    Google Scholar 

  45. L. Varge, L. Bartha, A.J. Nagy, V. Stefaniay, and B. Borossary:Proceedings of the Fifth Conference on Dimensioning and Strength Calculations, Vol. 1, Akademiai Kiado, Budapest, 1974.

    Google Scholar 

  46. D.C. Qiao: Master’s Degree, Institute of Metal Research, Chinese Academy of Sciences, 2003.

  47. T.G. Nieh, J. Wadsworth, C.T. Liu, T. Ohkubo, and Y. Hirotsu:Acta Mater., 2001, vol. 49, pp. 2887–96.

    Article  CAS  Google Scholar 

  48. T. Zumkley, S. Suzuki, M. Seidel, S. Mechler, and M.P. Macht:Mater. Sci. Forum, 2002, vol. 386–388, pp. 541–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhang, Z.F., Wang, Z.G. et al. Effects of tungsten fiber on failure mode of zr-based bulk metallic glassy composite. Metall Mater Trans A 37, 2459–2469 (2006). https://doi.org/10.1007/BF02586219

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586219

Keywords

Navigation