Skip to main content
Log in

Oxidation products of INCONEL alloys 600 and 690 in pressurized water reactor environments and their role in intergranular stress corrosion cracking

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, thermodynamic arguments for the stability of Ni and Cr compounds developed under pressurized water reactor environments (\(P_{H_2 O} \) and\(P_{H_2 } \)) were experimentally tested. A mechanism is proposed to explain crack initiation and propagation alloy 600 along the grain boundaries, where Cr2O3 has formed from the leaching of Cr from the matrix, leaving behind a porous Ni-rich region. The mechanism is based on the thermodynamic potential for the transformation of a protective NiO surface layer into an amorphous nonprotective Ni(OH)2 gel. This gel would also form along the grain boundaries and when hydrogenated steam reaches the porous Ni-rich regions. Crack initiation is then favored by tensile stressing of the grain boundary regions, which can easily rupture the gelatinous film. The leaching of matrix Cr to form nonprotective CrOOH gel at the crack tip followed by the exposure of fresh porous Ni to the environment could explain crack propagation in INCONEL alloy 600. The proposed crack initiation mechanism is not expected to occur in alloy 690 where a protective Cr2O3 film covers the entire metal surface. However, crack propagation along the grain boundaries in alloy 600 and precracked alloy 690 is expected to be active as hydroxide-forming reactions weaken the boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Magnin, N. Renaudot, and F. Foct:Mater. Trans., JIM, 2000, vol. 41 (1), pp. 210–18.

    CAS  Google Scholar 

  2. J. Panteret al.:Corrosion, 2002, paper no. 02519.

  3. L. Thomas and S. Bruemmer:Corrosion, 2000, vol. 56 (6), pp. 572–87.

    Article  CAS  Google Scholar 

  4. G.P. Airey:Corrosion, 1979, vol. 35 (3), pp. 129–35.

    CAS  Google Scholar 

  5. J.-D. Mithieuxet al.:Eurocorr ’96, 1996, vol. IV/IX, pp. 2-1–2-4.

    Google Scholar 

  6. H.F. Lopez and J.B. Ferguson:SIF2004, Conf. Proc., September 2004, A. Atrenset al., eds., pp. 249–56.

  7. S. Matshumima and Y. Shimizu:Trans. Jpn. Inst. Met., 1983, vol. 24 (3), pp. 149–53.

    Google Scholar 

  8. F. Foctet al.:Eurocorr ’96, 1996, vol. IV/IX, pp. 4-1–4-4.

    Google Scholar 

  9. C. Shen and P. Shewmon:Metall. Trans. A, 1990, vol. 21A, pp. 1261–71.

    CAS  Google Scholar 

  10. P. Scott:Corrosion, 2000, vol. 56 (8), pp. 771–82.

    Article  CAS  Google Scholar 

  11. C. Giggins and F. Pettit:Trans. TMS-AIME, 1969, vol. 245, pp. 2495–507.

    CAS  Google Scholar 

  12. C. Giggins and F. Pettit:Trans. TMS-AIME, 1969, vol. 245, pp. 2509–14.

    CAS  Google Scholar 

  13. G. Calvarin, R. Molins, and A. Huntz:Oxid. Met., 2000, vol. 53 (1–2), pp. 25–48.

    Article  CAS  Google Scholar 

  14. G. Calvarin, R. Molins, and A. Huntz:Oxid. Met., 2000, vol. 54 (1–2), pp. 399–426.

    Article  Google Scholar 

  15. G. Calvarin-Amari, A. Huntz, and R. Molins:Mater. High Temp., 2001, vol. 18 (2), pp. 91–99.

    Google Scholar 

  16. T. Terachi, N. Totsuka, T. Yamada, T. Nakagawa, H. Deguchi, M. Horiuchi, and M. Oshitani:J. Nucl. Sci. Technol., 2003, vol. 40 (7), pp. 509–16.

    CAS  Google Scholar 

  17. S. Lozano-Perez and J. Titchmarsh:Mater. High Temp., 2003, vol. 20 (4), pp. 573–79.

    Article  CAS  Google Scholar 

  18. Z. Szklarska-Smialowska, W. Lai, and Z. Xia:Corrosion, 1990, vol. 46 (10), pp. 853–60.

    CAS  Google Scholar 

  19. N.S. McIntyre, D.G. Zetaruk, and D. Owen:J. Electrochem. Soc., 1979, vol. 126 (5), pp. 750–60.

    Article  CAS  Google Scholar 

  20. R. Rios, T. Magnin, D. Noel, and O. de Bouvier:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 925–39.

    CAS  Google Scholar 

  21. M. Aia:J. Electrochem. Soc., 1966, vol. 113 (10), pp. 1045–47.

    CAS  Google Scholar 

  22. D. Wagman:J. Phys. Chem. Ref. Data, 1982, vol 11, Suppl., vol. 2, pp. 2–166.

    Google Scholar 

  23. M. Ali: Ph.D. Thesis, University of Wisconsin-Milwaukee, Milwaukee, WI, 2004, pp. 63 and 65.

    Google Scholar 

  24. N. Totuska, E. Lunarska, G. Grangnolino, and Z. Szklarska-Smialowska:Corrosion, 1987, vol. 43, pp. 505–14.

    Google Scholar 

  25. R.B. Rebak and Z. Szklarska-Smialowska:Corrosion, 1991, vol. 47, pp. 754–57.

    CAS  Google Scholar 

  26. T. Magnin:Corrosion-Deformation Interactions, Les Editions de Physique, Paris, France, 1993, pp. 27–41.

    Google Scholar 

  27. J.P. Hirth: inHydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS, Warrendale, PA, 1990.

    Google Scholar 

  28. O. Knackeet al.:Thermochemical Properties of Inorganic Substances, Volumes I & II, 2nd ed., Springer-Verlag, New York, NY, 1991, pp. 503, 521, 803, 811, 1438, 1455, and 1493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, J.B., Lopez, H.F. Oxidation products of INCONEL alloys 600 and 690 in pressurized water reactor environments and their role in intergranular stress corrosion cracking. Metall Mater Trans A 37, 2471–2479 (2006). https://doi.org/10.1007/BF02586220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586220

Keywords

Navigation