Skip to main content
Log in

Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: A micromechanically based approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-temperature creep behavior of the oxide-dispersion-strengthened (ODS) nickel-base superalloys MA 754 and MA 6000 has been investigated at temperatures up to 1273 K and lifetimes of approximately 4000 hours using monotonic creep tests at constant true stressσ, as well as true constant extension rate tests (CERTs) at\(\dot \varepsilon \). The derivation of creep rupture-lifetime diagrams is usually performed with conventional engineering parametric methods, according to Sherby and Dorn or Larson and Miller. In contrast, an alternative method is presented that is based on a more microstructural approach. In order to describe creep, the effective stress model takes into account the hardening contributionσ p caused by the presence of second-phase particles, as well as the classical Taylor back-stressσ p caused by dislocations. The modeled strain rate-stress dependence can be transferred directly into creep-rupture stress-lifetime diagrams using a modified Monkman-Grant (MG) relationship, which adequately describes the interrelation between\(\dot \varepsilon \) representing dislocation motion, and lifetimet f representing creep failure. The comparison with measured creep-rupture data proves the validity of the proposed micromechanical concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Heilmaier, K. Wetzel, and B. Reppich:Proc. 10th Int. Conf. on the Strength of Materials, H. Oikawa, K. Maruyama, S. Takeuchi, and M. Yamaguchi, ed., The Japan Institute of Metals, Sendai, 1994, pp. 563–66.

    Google Scholar 

  2. M. Heilmaier, K. Wetzel, J. Wunder, and B. Reppich:Proc. 10th Int. Conf. on the Strength of Materials, H. Oikawa, K. Maruyama, S. Takeuchi, and M. Yamaguchi, eds., The Japan Institute of Metals, Sendai, 1994, pp. 567–70.

    Google Scholar 

  3. H. Alexander and P. Haasen:Solid State Phys., 1968, vol. 22, p. 27.

    Article  CAS  Google Scholar 

  4. B. Ilschner:Hochtemperaturplastizität, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  5. B. Reppich: inMaterials Science and Technology, R.W. Cahn, P. Haasen, and E.J. Kramer eds., vol. 6,Plastic Deformation and Fracture of Materials, (H. Mughrabi), ed., VCH-Verlagsgesellschaft, Weinheim, 1992, pp. 312–57.

    Google Scholar 

  6. B. Reppich:Z. Metallkd., 1982, vol. 73, pp. 697–705.

    CAS  Google Scholar 

  7. B. Reppich, H. Bügler, R. Leistner, and M. Schütze:Proc. 2nd. Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, 1984, pp. 279–97 and 299–305.

    Google Scholar 

  8. B. Reppich, M. Heilmaier, H. Schmidt, and C. Schossig:Proc. 9th Int. Conf. on the Strength of Metals and Alloys, (D.G. Brandon, R. Chaim, and A. Rosen), eds., Freund Publishing House, London, 1991, pp. 405–12.

    Google Scholar 

  9. G. Taylor:Proc. R. Soc., 1934, vol. A145, pp. 362–404.

    CAS  Google Scholar 

  10. W. Blum, S. Straub, and S. Vogler:Proc. 9th Int. Conf. on the Strength of Metals and Alloys, D.G. Brandon, R. Chaim, and A. Rosen, eds., Freund Publishing House, London, 1991, pp. 111–26.

    Google Scholar 

  11. B. Reppich, M. Heilmaier, K. Liebig, G. Schumann, K.D. Stein, and T. Woller:Steel Res., 1990, vol. 61, pp. 251–57.

    CAS  Google Scholar 

  12. F.C. Monkman and N.J. Grant:Proc. ASTM, 1956, vol. 56, pp. 593–97.

    Google Scholar 

  13. F. Dobes and K. Milička:Met. Sci., (1976), vol. 10, pp. 382–84.

    CAS  Google Scholar 

  14. J.S. Benjamin:Metall. Trans., 1970, vol. 1, pp. 2943–51.

    CAS  Google Scholar 

  15. R.F. Singer and E. Arzt:Proc. Conf. High Temperature Alloys for Gas Turbines and other Applications, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.W. Gibbons, I. Kvernes, Y. Lindblom, J.B. Marriott, and D.B. Meadowcroft, eds., Reidel Publishing Company, Dordrecht, 1986, pp. 97–125.

    Google Scholar 

  16. M.V. Heimendahl:Einführung in die Elektronenmikroskopie, Vieweg-Verlag, Braunschweig, 1970.

    Google Scholar 

  17. M. Heilmaier and B. Reppich:Proc. 5th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., The Institute of Materials, London, 1993, pp. 231–44.

    Google Scholar 

  18. B. Reppich and G. Schumann:Mater. Sci. Eng., 1988, vol. A101, pp. 171–82.

    Google Scholar 

  19. J. Hammer and H. Mughrabi:Proc. 1st Eur. Conf. on Advanced Materials and Processes, H.E. Exner and V. Schumacher, eds., vol. 1,Advanced Processing and High Temperature Materials, D. Driver and H. Mughrabi, eds. DGM-Informationsgesellschaft, Oberurselials, 1990, pp. 445–50.

    Google Scholar 

  20. M. Schlegl: Diploma Thesis, University of Erlangen-Nürnberg, Erlangen, 1991.

    Google Scholar 

  21. H. Stiele: Diploma Thesis, University of Erlangen-Nürnberg, Erlangen, 1991.

    Google Scholar 

  22. J. Weertman:Rate Processes in Plastic Deformation of Materials, J.C.M. Li and A.K. Mukherjee, eds., ASM, Metals Park, OH, 1975, pp. 315–36.

    Google Scholar 

  23. J. Rösler and E. Arzt:Acta Metall., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

  24. R.L. Orr, O.D. Sherby, and J.E. Dom:Trans. ASM, 1954, vol. 46, pp. 113–28.

    CAS  Google Scholar 

  25. F.R. Larson and J. Miller:Trans. ASME, 1952, vol. 74, pp. 765–75.

    Google Scholar 

  26. R.F. Singer, R.C. Benn, and S.K. Kang:Proc. Conf. Frontiers of High Temperature Materials II, IncoMAP, London, 1983, pp. 336–57.

    Google Scholar 

  27. E. Arzt:Z. Metallkd., 1984, vol. 75, pp. 206–12.

    CAS  Google Scholar 

  28. J.J. Stephens and W.D. Nix:Metall. Trans. A, 1986, vol. 17A, pp. 281–93.

    CAS  Google Scholar 

  29. H. Zeizinger and E. Arzt:Z. Metallkd. 1988, vol. 79, pp. 774–81.

    CAS  Google Scholar 

  30. P. Cosse, D. Coutsouradis, L. Habraken, and A. Piccinin:Z. Metallkd., 1980, vol. 71, pp. 138–49.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heilmaier, M., Reppich, B. Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: A micromechanically based approach. Metall Mater Trans A 27, 3861–3870 (1996). https://doi.org/10.1007/BF02595635

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595635

Keywords

Navigation