Skip to main content
Log in

Solving nonlinear multicommodity flow problems by the analytic center cutting plane method

  • Published:
Mathematical Programming Submit manuscript

Abstract

The paper deals with nonlinear multicommodity flow problems with convex costs. A decomposition method is proposed to solve them. The approach applies a potential reduction algorithm to solve the master problem approximately and a column generation technique to define a sequence of primal linear programming problems. Each subproblem consists of finding a minimum cost flow between an origin and a destination node in an uncapacited network. It is thus formulated as a shortest path problem and solved with Dijkstra’s d-heap algorithm. An implementation is described that takes full advantage of the supersparsity of the network in the linear algebra operations. Computational results show the efficiency of this approach on well-known nondifferentiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000 commodities).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin,Network Flows (Prentice-Hall, Englewood Cliffs, NJ, 1993).

    Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen,LAPACK Users’ Guide. (SIAM, Philadelphia, PA, 1992).

    MATH  Google Scholar 

  3. D.S. Atkinson and P.M. Vaidya, “A cutting plane algorithm that uses analytic centers,”Mathematical Programming 69 (1995) 1–43.

    MathSciNet  Google Scholar 

  4. O. Bahn, J.-L. Goffin, J.-P. Vial and O. du Merle, “Experimental behaviour of an interior point cutting plane algorithm for convex programming: An application to geometric programming,”Discrete Applied Mathematics 49 (1994) 3–23.

    Article  MATH  MathSciNet  Google Scholar 

  5. O. Bahn, O. du Merle, J.-L. Goffin and J.-P. Vial, “A cutting plane method from analytic centers for stochastic programming,”Mathematical Programming 69 (1995) 45–73.

    MathSciNet  Google Scholar 

  6. I.C. Choi and D. Goldfarb, “Exploiting special structure in a primal-dual path following algorithm,”Mathematical Programming 58 (1993) 33–52.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.W. Cottle, “Manifestations of the Schur complement,”Linear Algebra and its Applications 8 (1974) 189–211.

    Article  MATH  MathSciNet  Google Scholar 

  8. G.B. Dantzig and P. Wolfe, “The decomposition algorithm for linear programming,”Econometrica 29 (4) (1961) 767–778.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. de Ghellinck and J.-P. Vial, “A polynomial Newton method for linear programming,”Algorithmica 1 (1986) 425–453.

    Article  MATH  MathSciNet  Google Scholar 

  10. I.S. Duff, A.M. Erisman and J.K. Reid,Direct Methods for Sparse Matrices (Oxford University Press, New York, 1987).

    Google Scholar 

  11. J.M. Farvolden, W.B. Powell and I.J. Lustig, “A primal partitioning solution for the arc-chain formulation of a multicommodity network flow problem,”Operations Research 41 (1993) 669–603.

    MATH  Google Scholar 

  12. M. Fukushima, “On the dual approach to the traffic assignment problems,”Transportation Research B 18 (1984) 235–245.

    Article  MathSciNet  Google Scholar 

  13. E.M. Gafni and D.P. Bertsekas, “Two-metric projection methods for constrained optimization,”SIAM Journal on Control and Optimization 22 (6) (1984) 936–964.

    Article  MATH  MathSciNet  Google Scholar 

  14. P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, “Sparse matrix methods in optimization,”SIAM Journal on Scientific and Statistical Computing 5 (1984) 562–589.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.-L. Goffin, A. Haurie and J.-P. Vial, “Decomposition and nondifferentiable optimization with the projective algorithm,”Management Science 38 (2) (1992) 284–302.

    Article  MATH  Google Scholar 

  16. J.-L. Goffin, A. Haurie, J.-P. Vial and D.L. Zhu, “Using central prices in the decomposition of linear programs,”European Journal of Operational Research 64 (1993) 393–409.

    Article  MATH  Google Scholar 

  17. J.-L. Goffin, Z. Luo, and Y. Ye, “On the complexity of a column generation algorithm for convex or quasiconvex feasibility problems,” in W.W. Hager, D.W. Hearn and P.M. Pardalos, eds.,Large Scale Optimization: State of the Art (Kluwer Academic Publishers, Dordrecht).

  18. G.H. Golub and C. Van Loan.Matrix Computations, 2nd ed. (Johns Hopkins University Press, Baltimore, MD, 1989).

    MATH  Google Scholar 

  19. J. Gondzio and T. Terlaky, “A computational view of interior point methods for linear programming,” in J. Beasley, ed.,Advances in Linear and Integer Programming (Oxford University Press, Oxford) 1996, 103–144.

    Google Scholar 

  20. C.C. Gonzaga, “Path following methods for linear programming,”SIAM Review 34 (1992) 167–227.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Hearn and S. Lawphongpanich, “A dual ascent algorithm for traffic assignment problems,”Transportation Research B 24 (1990) 423–430.

    Article  MathSciNet  Google Scholar 

  22. D. Hearn, S. Lawphongpanich, and J. Ventura, “Restricted simplicial decomposition: Computation and extensions,”Mathematical Programming Study 31 (1987) 99–118.

    MATH  MathSciNet  Google Scholar 

  23. A.L. Hipolito, “A weighted least squares approach to direction finding in mathematical programming,” Ph.D. Thesis, Dept. of Industrial Engineering, University of Florida, Gainesville, FL (1993).

    Google Scholar 

  24. K.L. Jones, I.J. Lustig, J.M. Farvolden and W.B. Powell, “Multicommodity network flows: The impact of formulation on decomposition,”Mathematical Programming 62 (1993) 95–117.

    Article  MathSciNet  Google Scholar 

  25. N. Karmarkar, “A new polynomial time algorithm for linear programming,”Combinatorica 4 (1984) 373–395.

    Article  MATH  MathSciNet  Google Scholar 

  26. J.E. Kelley, “The cutting plane method for solving convex programs,”Journal of the SIAM 8 (1960) 703–712.

    MathSciNet  Google Scholar 

  27. K.C. Kiwiel,Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics, Vol. 1133 (Springer, Berlin, 1985).

    MATH  Google Scholar 

  28. K.C. Kiwiel, “Proximity control in bundle methods for convex nondifferentiable optimization,”Mathematical Programming 46 (1990) 105–122.

    Article  MATH  MathSciNet  Google Scholar 

  29. L.S. Lasdon,Optimization Theory for Large Scale Systems (Macmillan, New York, 1970).

    Google Scholar 

  30. C. Lemaréchal, “Nondifferentiable optimization”, in G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds.,Optimization, Handbooks in Operations Research and Management Science, Vol. 1, (North-Holland, Amsterdam, 1989) pp. 529–572.

    Google Scholar 

  31. C. Lemaréchal, A. Nemirovskii and Yu. Nesterov, “New variants of bundle methods,”Mathematical Programming 69 (1995) 177–204.

    Article  MathSciNet  Google Scholar 

  32. M. Minoux,Mathematical Programming: Theory and Algorithms (Wiley, New York, 1986).

    MATH  Google Scholar 

  33. J.E. Mitchell and M.J. Todd, “Solving combinatorial optimization problems using Karmarkar’s algorithm,”Mathematical Programming 56 (1992) 245–284.

    Article  MathSciNet  Google Scholar 

  34. Yu. Nesterov, “Cutting plane algorithms from analytic centers: Efficiency estimates.”Mathematical Programming. Series B 69 (1995) 149–176.

    MathSciNet  Google Scholar 

  35. R. T. Rockafellar,Manotropic Flows and Network Optimizations (Wiley, New York, 1984).

    Google Scholar 

  36. H. Schramm and J. Zowe, “A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results.”SIAM Journal of Optimization 2 (1992) 1211–1252.

    Article  MathSciNet  Google Scholar 

  37. G. Sonnevend, “New algorithms in convex programming based on a notion of “centre” (for systems of analytic inequalities) and on rational extrapolation,” in: K.H. Hoffmann, J.B. Hiriat-Urruty, C. Lemarechal, and J. Zowe, eds.,Trends in Mathematical Optimization: Proceedings of the 4th French-German Conference on Optimization in Irsee, West-Germany, April 1986. Vol. 84 of International Series of Numerical Mathematics (Birkhäuser, Basel, 1988), pp. 311–327.

    Google Scholar 

  38. Y. Ye, “A potential reduction algorithm allowing column generation,”SIAM Journal on Optimization 2 (1992) 7–20.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by the Fonds National de la Recherche Scientifique Suisse, grant #12-34002.92, NSERC-Canada and FCAR-Quebec.

This research was supported by an Obermann fellowship at the Center for Advanced Studies at the University of Iowa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffin, J.L., Gondzio, J., Sarkissian, R. et al. Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Mathematical Programming 76, 131–154 (1997). https://doi.org/10.1007/BF02614381

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614381

Keywords

Navigation