Skip to main content
Log in

Solution of monotone complementarity problems with locally Lipschitzian functions

  • Published:
Mathematical Programming Submit manuscript

Abstract

The paper deals with complementarity problems CP(F), where the underlying functionF is assumed to be locally Lipschitzian. Based on a special equivalent reformulation of CP(F) as a system of equationsφ(x)=0 or as the problem of minimizing the merit functionΘ=1/2∥Φ 22 , we extend results which hold for sufficiently smooth functionsF to the nonsmooth case.

In particular, ifF is monotone in a neighbourhood ofx, it is proved that 0 εδθ(x) is necessary and sufficient forx to be a solution of CP(F). Moreover, for monotone functionsF, a simple derivative-free algorithm that reducesΘ is shown to possess global convergence properties. Finally, the local behaviour of a generalized Newton method is analyzed. To this end, the result by Mifflin that the composition of semismooth functions is again semismooth is extended top-order semismooth functions. Under a suitable regularity condition and ifF isp-order semismooth the generalized Newton method is shown to be locally well defined and superlinearly convergent with the order of 1+p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.C. Billups and M.C. Ferris, QPCOMP: A quadratic programming based solver for mixed complementarity problems,Mathematical Programming 76 (1997) 533–562 (this issue).

    Article  MathSciNet  Google Scholar 

  2. B. Chen and P.T. Harker, Smooth approximations to nonlinear complementarity problems, Technical Report, Department of Management and Systems, College of Business and Economics, Washington State University (Pullman, WA 1995).

  3. C. Chen and O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems,Computational Optimization and Applications 5 (1996) 97–138.

    Article  MATH  MathSciNet  Google Scholar 

  4. F.H. Clarke,Optimization and Nonsmooth Analysis (Wiley, New York, 1983).

    MATH  Google Scholar 

  5. R.W. Cottle, J.-S. Pang and R.E. Stone,The Linear Complementarity Problem (Academic, New York, 1992).

    MATH  Google Scholar 

  6. T. De Luca, F. Facchinci and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems,Mathematical Programming 75 (1996) 407–439.

    MathSciNet  Google Scholar 

  7. S.P. Dirkse and M.C. Ferris, The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems.Optimization Methods and Software 5 (1995) 123–156.

    Google Scholar 

  8. F. Facchinei, A. Fischer and C. Kanzow, A semismooth Newton method for variational inequalities: Theoretical results and preliminary numerical experience, Preprint MATH-NM-21-1995, Institute for Numerical Mathematics, Technical University of Dresden (Dresden, 1995).

    Google Scholar 

  9. F. Facchinei and J. Soares, A new merit function for nonlinear complementarity problems and a related algorithm,SIAM Journal on Optimization 7 (1997) 225–247.

    Article  MATH  MathSciNet  Google Scholar 

  10. M.C. Ferris and D. Ralph, Projected gradient methods for nonlinear complementarity problems via normal maps, in: D.Z. Du, L. Qi and R.S. Womersley, eds.,Recent Advances in Nonsmooth Optimization (World Scientific, Singapore, 1995) 57–87.

    Google Scholar 

  11. M.C. Ferris and S. Lucidi, Nonmonotone stabilization methods for nonlinear equations,Journal of Optimization Theory and Applications 81 (1994) 53–71.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Fischer, A special Newton-type optimization method,Optimization 24 (1992) 269–284.

    MATH  MathSciNet  Google Scholar 

  13. A. Fischer, A Newton-type method for positive semidefinite linear complementarity problems,Journal of Optimization Theory and Applications 86 (1995) 585–608.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Fischer, On the superlinear convergence of a Newton-type method for LCP under weak conditions,Optimization Methods and Software 6 (1995) 83–107.

    Google Scholar 

  15. A. Fischer, An NCP-function and its use for the solution of complementarity problems, in: D.Z. Du, L. Qi and R.S. Womersley, eds.,Recent Advances in Nonsmooth Optimization (World Scientific, Singapore, 1995) 88–105.

    Google Scholar 

  16. A. Friedlander, J.M. Martinez and S.A. Santos, Solution of linear complementarity problems using minimization with simple bounds,Global Optimization 6 (1995) 253–267.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems,Computational Optimization and Applications 5 (1996) 155–173.

    Article  MATH  MathSciNet  Google Scholar 

  18. P.T. Harker and B. Xian, Newton’s method for the nonlinear complementarity problem: a B-differentiable equation approach,Mathematical Programming 48 (1990) 339–357.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.-B. Hiriart-Urruty and C. Lemaréchal,Convex Analysis and Minimization Algorithms (Springer, Heidelberg, 1993).

    Google Scholar 

  20. H. Jiang, Unconstrained minimization approaches to nonlinear complementarity problems,Journal of Global Optimization 9 (1996) 169–181.

    Article  MATH  Google Scholar 

  21. H. Jiang and L. Qi, Local uniqueness and convergence of iterative methods for nonsmooth variational inequalities,Journal of Mathematical Analysis and Applications 196 (1995) 314–331.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Jiang and L. Qi, Globally and superlinearly convergent trust region algorithm for convex SC1 minimization problems and its application to stochastic programs,Journal of Optimization Theory and Applications 90 (1996) 653–673.

    Article  MathSciNet  Google Scholar 

  23. H. Jiang and L. Qi, A new nonsmooth equations approach to nonlinear complementarity problems,SIAM Journal on Control and Optimization 35 (1997) 178–193.

    Article  MATH  MathSciNet  Google Scholar 

  24. S.-P. Han, J.-S. Pang and N. Rangaraj, Globally convergent Newton methods for nonsmooth equations,Mathematics of Operations Research 17 (1992) 586–607.

    MATH  MathSciNet  Google Scholar 

  25. C. Kanzow, Some equation-based methods for the nonlinear complementarity problem,Optimization Methods and Saftware 3 (1994) 327–340.

    Google Scholar 

  26. C. Kanzow, An unconstrained optimization technique for large-scale linearly constrained convex minimization problems,Computing 53 (1994) 101–117.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Kanzow, Global convergence properties of some iterative methods for linear complementarity problems,SIAM Journal on Optimization, to appear.

  28. M. Kojima and S. Shindo, Extensions of Newton and quasi-Newton methods to systems ofPC 1 equations,Journal of Operations Research Society of Japan 29 (1986) 352–374.

    MATH  MathSciNet  Google Scholar 

  29. B. Kummer, Newton’s method for non-differentiable functions, in: J. Guddat et al., eds.,Mathematical Research, Advances in Mathematical Optimization (Akademie, Berlin, 1988) pp. 114–125.

    Google Scholar 

  30. B. Kummer, Newton’s method based on generalized derivatives for nonsmooth functions: Convergence analysis, in: W. Oettli and D. Pallaschke, eds.,Advances in Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 382 (Springer, Heidelberg, 1992) pp. 171–194.

    Google Scholar 

  31. O.L. Mangasarian, Equivalence of the complementarity problem to a system of nonlinear equations,SIAM Journal on Applied Mathematics 31 (1976) 89–92.

    Article  MathSciNet  MATH  Google Scholar 

  32. O.L. Mangasarian and M.V. Solodov, Nonlinear complementarity as unconstrained and constrained minimization,Mathematical Programming 62 (1993) 277–297.

    Article  MathSciNet  Google Scholar 

  33. R. Mifflin, Semismooth and semiconvex functions in constrained optimization,SIAM Journal on Control and Optimization 15 (1977) 959–972.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.J. Moré, Global methods for nonlinear complementarity problems,Mathematics of Operations Research, to appear.

  35. J.-S. Pang, Newton’s method for B-differentiable equations,Mathematics of Operations Research 15 (1990) 311–341.

    MATH  MathSciNet  Google Scholar 

  36. J.-S. Pang, A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems,Mathematical Programming 51 (1991) 101–131.

    Article  MATH  MathSciNet  Google Scholar 

  37. J.-S. Pang and S.A. Gabriel, NE/SQP: A robust algorithm for the nonlinear complementarity problem,Mathematical Programming 60 (1993) 295–337.

    Article  MathSciNet  Google Scholar 

  38. J.-S. Pang and L. Qi, Nonsmooth equations: Motivation and algorithms,SIAM Journal on Optimization 3 (1993) 443–465.

    Article  MATH  MathSciNet  Google Scholar 

  39. J.-S. Pang and L. Qi, A globally convergent Newton method for convex SC1 minimization problems,Journal of Optimization Theory and Applications 85 (1995) 633–648.

    Article  MATH  MathSciNet  Google Scholar 

  40. L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,Mathematics of Operations Research 18 (1993) 227–244.

    MATH  MathSciNet  Google Scholar 

  41. L. Qi and H. Jiang, Karush-Kuhn-Tucker equations and convergence analysis of Newton methods and quasi-Newton methods for solving these equations,Mathematics of Operations Research, to appear.

  42. L. Qi and J. Sun, A nonsmooth version of Newton’s method,Mathematical Programming 58 (1993) 353–367.

    Article  MathSciNet  Google Scholar 

  43. D. Ralph, Global convergence of damped Newton’s method for nonsmooth equations via the path search,Mathematics of Operations Research 19 (1994) 352–389.

    Article  MATH  MathSciNet  Google Scholar 

  44. S.M. Robinson, Mathematical foundations of nonsmooth embedding methods,Mathematical Programming 48 (1990) 221–229.

    Article  MATH  MathSciNet  Google Scholar 

  45. S.M. Robinson, Newton’s method for a class of nonsmooth functions,Set Valued Analysis 2 (1994) 291–305.

    Article  MATH  MathSciNet  Google Scholar 

  46. R.T. Rockafellar, Computational schemes for large-scale problems in extended linear quadratic programming,Mathematical Programming 48 (1990) 447–474.

    Article  MATH  MathSciNet  Google Scholar 

  47. R.T. Rockafellar and R.J.-B. Wets, A Lagrangian finite-generation technique for solving linear-quadratic problems in stochastic programming,Mathematical Programming Study 28 (1986) 63–93.

    MATH  MathSciNet  Google Scholar 

  48. P.K. Subramanian, Gauss-Newton methods for the complementarity problem,Journal of Optimization Theory and Applications 77 (1993) 467–482.

    Article  MATH  MathSciNet  Google Scholar 

  49. P. Tseng, Growth behaviour of a class of merit functions for the nonlinear complementarity problem,Journal of Optimization Theory and Applications 89 (1996) 17–37.

    Article  MATH  MathSciNet  Google Scholar 

  50. P. Tseng, An infeasible path-following method for monotone complementarity problem,SIAM Journal on Optimization, to appear.

  51. P. Tseng, N. Yamashita and M. Fukushima, Equivalence of complementarity problems to differentiable minimization: A unified approach,SIAM Journal on Optimization, to appear.

  52. N. Yamashita and M. Fukushima, On stationary points of the implicit Lagrangian for nonlinear complementarity problems,Journal of Optimization Theory and Applications 84 (1995) 653–663.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, A. Solution of monotone complementarity problems with locally Lipschitzian functions. Mathematical Programming 76, 513–532 (1997). https://doi.org/10.1007/BF02614396

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614396

Keywords

Navigation