Skip to main content
Log in

A computerized mechanical cell stimulator for tissue culture: Effects on skeletal muscle organogenesis

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

A tissue culture system has been developed which can mechanically stimulate cells growing on a highly elastic plastic substratum in a 24-well cell growth chamber. The collagen-coated substratum to which the cells attach and grow in the Mechanical Cell Stimulator (Model I) can be repetitively stretched and relaxed by stepper motor with linear accuracy of 30 μm. The activity controlling unit is an Apple IIe computer interfaced with the cell growth chamber via optical data links and is capable of simulating many of the mechanical activity patterns that cells are subjected to in vivo. Primary avian skeletal myoblasts proliferate and fuse into multinucleated myotubes in this set-up in a manner similar to normal tissue culture dishes. Under static culture conditions, the muscle cells differentiate into networks of myotubes which show little orientation. Growing the proliferating muscle cells on a unidirectional stretching substratum causes the developing myotubes to orient parallel to the direction of movement. In contrast, growing the cells on a substratum undergoing continuous stretch-relaxation cycling orients the developing myotubes perpendicular to the direction of movement. Neither type of mechanical activity significantly affects the rate of cell proliferation of the rate of myoblast fusion into myotubes. These results indicate that during in vivo skeletal muscle organogenesis, when substantial mechanical stresses are placed on skeletal muscle cells by both continuous bone elongation and by spontaneous contractions, only bone elongation plays a significant role in proper fiber orientation for subsequent functional work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belloussou, L. V.; Dorfman, J. G.; Cherdantzev, V. G. Mechanical stresses and morphological patterns in amphibian embryos. J. Embryol. Exp. Morphol. 34:559–574; 1975.

    Google Scholar 

  2. Blechschmidt, E.; Gaser, R. F. Biokinetics and biodynamics of human differentiation. Principles and applications. IL: Charles C. Thomas Publisher; 1897:362.

    Google Scholar 

  3. Bragina, E. E.; Vasiliev, J. M.; Gelfand, I. M. Formation of bundles of microfilaments during spreading of fibroblasts on the substrate. Exp. Cell Res. 97:241–248; 1976.

    Article  PubMed  CAS  Google Scholar 

  4. Bray, D. Axonal growth in response to experimentally applied mechanical tension. Dev. Biol. 102:379–389; 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Buck, R. C. Reorientation response of cells to repeated stretch and recoil of the substratum. Exp. Cell Res. 127:470–474; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Burton, A. D. Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34:619–667; 1954.

    PubMed  CAS  Google Scholar 

  7. Caterson, B.; Lowther, D. A. Changes in the metabolism of the proteoglycan from sheep articular cartilage in response to mechanical stress. Biochim. Biophys. Acta 540:412–423; 1979.

    Google Scholar 

  8. Dartsch, P. C.; Hammerle, H.; Betz, H. Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Acta Anat. 125:108–113; 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Dartsch, P. C.; Hammerle, H. Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 41:339–346; 1986.

    PubMed  CAS  Google Scholar 

  10. De Witt, M. T.; Handley, C. J.; Oates, B. W., et al.In vitro response of chondrocytes to mechanical loading. The effects of short term mechanical tension. Conn. Tissue Res. 12:97–109; 1984.

    Google Scholar 

  11. Ede, D. A.; Gumpel-Pinot, M.; Flint, O. P. Orientated movement of myogenic cells in the avian limb bud and its dependence on presence of the apical ectodermal ridge. In: Kemp, R. B.; Hinchcliffe, U. R., eds. Matrices and cell differentiation. New York: Alan R. Liss; 1984:427–438.

    Google Scholar 

  12. Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature 273:345–349; 1978.

    Article  PubMed  CAS  Google Scholar 

  13. Franke, R. P.; Grafe, M.; Schnittler, H., et al. Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 307:648–649; 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity. Circ. Res. 22:165–197; 1968.

    PubMed  CAS  Google Scholar 

  15. Gabbiani, G.; Gabbiani, F.; Lomardi, D., et al. Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc. Natl. Acad. Sci. USA 80:2361–2364; 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Goss, R. J. Regulation of organ and tissue growth. New York: Academic Press; 1972:365.

    Google Scholar 

  17. Holmes, L. B.; Trelstad, R. L. Cell polarity in precartilage mouse limb mesenchyme cells. Dev. Biol. 78:511–520; 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Ives, C. L.; Eskin, S. G.; McIntire, L. V. Mechanical effects on endothelial cell morphology: In vitro assessment. In Vitro 22:500–507; 1986.

    CAS  Google Scholar 

  19. Konigsberg, I. R. Diffusion-mediated control of myoblast fusion. Dev. Biol. 26:133–152; 1971.

    Article  PubMed  CAS  Google Scholar 

  20. Landmesser, L. T.; O'Donovan, M. J. Activation patterns of embryonic chick hind limb muscles recordedin ovo and in an isolated spinal cord preparation. J. Physiol. (Lond.) 347:189–204; 1984.

    CAS  Google Scholar 

  21. Leung, D. Y. M.; Glagov, S.; Mathews, M. B. A newin vitro system for studying cell response to mechanical stimulation. Different effects of cyclic stretching and agitation of smooth muscle cell biosynthesis. Exp. Cell Res. 109:285–298; 1977.

    Article  PubMed  CAS  Google Scholar 

  22. Luther, P. W.; Peng, H. B.; Lin, J. J. C. Changes in cell shape and actin distribution induced by constant electric fields. Nature 303:61–64; 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Moss, P. S.; Spector, D. H.; Glass, C. A., et al. Streptomycin retards the phenotypic maturation of chick myogenic cells. In Vitro 20:473–478; 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Pitelka, D. R.; Taggart, B. N. Mechanical tension induces lateral movement of intramembrane components of the tight junction: Studies on mouse mammary cells in culture. J. Cell. Biol. 96:606–612; 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Powell, J. A. Development of normal and genetically dystrophic mouse muscle in tissue culture. Prefusion and fusion activities of mouse cells: phase contrast and time-lapse studies. Exp. Cell Res. 80:251–264; 1973.

    Article  PubMed  CAS  Google Scholar 

  26. Sheehan, D. C.; Hrapchak, B. B. Theory and practice of histochemistry. 2nd ed. St. Louis, MO: C. V. Mosby Co.; 1980:143.

    Google Scholar 

  27. Stewart, D. The role of tension in muscle growth. In: Regulation of organ and tissue growth. Goss, R. J. ed. New York: Academic Press; 1972:77–100.

    Google Scholar 

  28. Takenchi, S. Wound healing in the cornea of the chick embryo. IV. Promotion of the migratory activity of isolated corneal epithelium in culture by the application of tension. Dev. Biol. 70:232–240; 1979.

    Article  Google Scholar 

  29. Vandenburgh, H. H. Separation of plasma membrane markers by glycerol-induced blistering of muscle cells. Biochim. Biophys. Acta 466:302–314; 1977.

    Article  PubMed  CAS  Google Scholar 

  30. Vandenburgh, H. H.; Kaufman, S.In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268; 1979

    Article  PubMed  CAS  Google Scholar 

  31. Vandenburgh, H. H. Dynamic mechanical orientation of skeletal myofibersin vitro. Dev. Biol. 93:438–443; 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Vandenburgh, H. H. Motion into mass: How does tension stimulate muscle growth? Med. Sci. Sports Exerc. 19:S142-S149; 1987.

    PubMed  CAS  Google Scholar 

  33. Vandenburgh, H. H.; Karlisch, P.; Farr, L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro 24:166–174; 1988.

    CAS  Google Scholar 

  34. Weiss, P. Functional adaptation and the role of ground substances in development. Am. Naturalist 118:389–407; 1933.

    Google Scholar 

  35. Zak, R.; Rabinowitz, M. Molecular aspects of cardian hypertrophy. Ann. Rev. Physiol. 41:539–552; 1979.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants NS16753, AR36266, and RR05818 from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenburgh, H.H. A computerized mechanical cell stimulator for tissue culture: Effects on skeletal muscle organogenesis. In Vitro Cell Dev Biol 24, 609–619 (1988). https://doi.org/10.1007/BF02623597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623597

Key words

Navigation