Skip to main content
Log in

Human bone marrow stromal cells express an osteoblastic phenotype in culture

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

This study reports the selection and characterization of osteogenic precursors from human bone marrow which were isolated by two “clonings” and successive subculturing. These cell lines express alkaline phosphatase activity. Gel electrophoresis of [3H]-proline labeled cultures showed that the cloned cells produce only type I collagen. They synthetize osteocalcin and osteonectin. They respond to 1,25 dihydroxy vitamin D3 by increasing osteocalcin synthesis and secretion, and to parathyroid hormone by increasing cyclic AMP synthesis. After the third subculture in the absence of β-glycerophosphate, these cell lines formed lots of clusters which exhibit high alkaline phosphatase activity and positive von Kossa staining. X-ray energy spectrum shows that these cells are surrounded by “budding” structures containing calcium and phosphorus with a ratio Ca:P identical to those of pure hydroxyapatite. This process was associated with45Ca uptake into the cells. All these data support the selection of osteogenic cells which may be of considerable clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerman, G. A. Substituted naphthol AS phosphate derivatives for the localization of leukocyte alkaline phosphatase activity. Lab. Invest. 11:563–573; 1962.

    PubMed  CAS  Google Scholar 

  2. Aronow, M. A.; Gerstenfeld, L. C.; Owen, T. A., et al. Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J. Cell. Physiol. 143:213–221; 1990.

    Article  PubMed  CAS  Google Scholar 

  3. Ashton, B. A.; Allen, T. D.; Howlett, C. R., et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. 151:294–307; 1980.

    PubMed  Google Scholar 

  4. Ashton, B. A.; Abdullah, F.; Cave, J., et al. Characterization of cells with high alkaline phosphatase activity derived from human bone and marrow. Preliminary assessment of their osteogenicity. Bone 6:313–319; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Aufmkolk, B.; Hauschka, P. V.; Schwartz, E. R. Characterization of human bone cells in culture. Calcif. Tissue Int. 37:228–235; 1985.

    Article  CAS  Google Scholar 

  6. Bab, I.; Ashton, B.; Gazit, D., et al. Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J. Cell. Sci. 84:139–151; 1986.

    PubMed  CAS  Google Scholar 

  7. Bab, I.; Passi-Even, L.; Gazit, D., et al. Osteogenesis in vivo diffusion chamber cultures of human marrow cells. Bone Miner. 4:373–386; 1988.

    PubMed  CAS  Google Scholar 

  8. Battmann, A.; Kern, A.; Jundt, G., et al. Constant differentiation of a human osteosarcoma cell-line through nude mice passages and long term culture. 38th Annual meeting of the European tissue culture society. London; 1990:55.

  9. Bellows, C. G.; Aubin, J. E.; Heersche, J. N. M. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 14:27–40; 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Benayahu, D.; Kletter, Y.; Zipori, D., et al. Bone marrow-derived stromal cell line expressing osteoblastic phenotype in vitro an osteogenic capacity in vivo. J. Cell. Physiol. 140:1–7; 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Bonadio, J.; Holbrook, K. A.; Gelinas, R. E., et al. Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta. J. Biol. Chem. 260:1734–1742; 1985.

    PubMed  CAS  Google Scholar 

  12. Bruder, S. P.; Caplan, A. I. Cellular and molecular events during embryonic bone development. Connect. Tissue Res. 20:65–71; 1989a.

    PubMed  CAS  Google Scholar 

  13. Bruder, S. P.; Caplan, A. I. First bone formation and the dissection of an osteogenic lineage in the embryonic chick tibia is revealed by monoclonal antibodies against osteoblasts. Bone 10:359–375; 1989b.

    Article  PubMed  CAS  Google Scholar 

  14. Bruder, S. P.; Gazit, D.; Passi-Even, L., et al. Osteochondral differentiation of avian bone marrow cells in diffusion chambers in vivo. J. Bone Miner. Res. 11:141–151; 1990.

    Article  CAS  Google Scholar 

  15. Chung, C.; Golub, E. E.; Forbes, E., et al. Mechanism of action of β-glycerophosphate on bone cell mineralization. Calcif. Tissue Int. 51:305–311; 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Crisp, A. J.; McGuire-Goldring, M. B.; Goldring, S. R. A system for culture of human trabecular bone and hormone response profiles of derived cells. Br. J. Exp. Pathol. 65:645–654; 1984.

    PubMed  CAS  Google Scholar 

  17. Davies, J. E. Human bone marrow cells synthesize collagen, in diffusion chambers implanted into the normal rat. Cell Biol. Int. Rep. 11:12; 1987.

    Article  Google Scholar 

  18. Friedenstein, A. J.; Chailakhjan, R. K.; Lalykina, K. S. The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells. Cell Tissue Kinet. 3:393–403; 1970.

    PubMed  CAS  Google Scholar 

  19. Friedenstein, A. J. Precursor cells of melanocytes. Int. Rev. Cytol. 47:327–355; 1976.

    PubMed  CAS  Google Scholar 

  20. Friedenstein, A. J.; Chairlakhjan, R. K.; Gerasimow, U. V. Bonemarrow osteogenic stem-cells. In vitro cultivation and transplantation in diffusion-chambers. Cell Tissue Kinet. 20:263–272; 1987.

    PubMed  CAS  Google Scholar 

  21. Goshima, J.; Goldberg, V.; Caplan, A. I. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin. Orthop. 262:298–311; 1991.

    PubMed  Google Scholar 

  22. Gotoh, Y.; Hiraiwa, K.; Nagayama, M. In vitro mineralization of osteoblastic cell derived from human bone. 8:239–250; 1990.

  23. Harmand, M. F.; Thomasset, M.; Rouais, F., et al. In vitro stimulation of articular chondrocyte differentiated function by 1,25-dihydroxycholecalciferol or 24R,25-dihydroxycholecalciferol. J. Cell. Physiol. 119:359–365; 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Harmand, M. F.; Bordenave, L.; Duphil, R., et al. Human “osteoblastlike” cells in culture: responsiveness to 1,25-(OH)2D3. In: Norman, A. W.; DeGruyter, W., et al., eds. Vitamin D. A chemical biochemical and clinic update. Walter de Gruyter & Co. 1985:197–198.

  25. Haynesworth, S. E.; Goshima, J.; Goldberg, V. M., et al. Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88; 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Hekkelman, Ng, B.; Heersche, J. W. The effect of cortisol on the adenosine 3′,5′-monophosphate response to parathyroid hormone of bone in vitro. Endocrinology 104:1130–1135; 1979.

    PubMed  Google Scholar 

  27. Kaplow, L. S. Leucocyte alkaline phosphatase cytochemistry. Applications and methods. NY Acad. Sci. 155:911–916; 1968.

    Article  CAS  Google Scholar 

  28. Kassem, M.; Risteli, L.; Mosekilde, L., et al. Formation of osteoblastlike cells from human mononuclear bone marrow culture. APMIS Acta Pathol. Microbiol. Immunol. Scand. 99:269–274; 1991.

    CAS  Google Scholar 

  29. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  30. Leboy, P. S.; Beresford, J. N.; Devlin, C., et al. Dexamethasone induction of osteoblast mRNA in rat marrow stromal cell cultures. J. Cell. Physiol. 146:370–378; 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Luria, E. A.; Owen, M. E.; Friedenstein, A. J., et al. Bone formation in organ cultures of bone marrow. Cell Tissue Res. 248:449–454; 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Mahonen, A.; Pirskanen, A.; Keinänen, R., et al. Effect of 1,25(OH)2D3 on its receptor mRNA levels and osteocalcin synthesis in human osteosarcoma cells. Biochim. Biophys. Acta 1048:30–37; 1990.

    PubMed  CAS  Google Scholar 

  33. Majeska, R. J.; Rodan, G. A. Alkaline phosphatase inhibition by parathyroid hormone and isoproterenol in a clonal rat osteosarcoma cell line. Possible mediation by cyclic AMP. Calcif. Tissue Int. 34:59–66; 1982a.

    Article  PubMed  CAS  Google Scholar 

  34. Majeska, R. J.; Rodan, G. A. The effect of 1,25-(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J. Biol. Chem. 257:3362–3365; 1982b.

    PubMed  CAS  Google Scholar 

  35. Majeska, R. J.; Rodan, G. A. Culture and activity of osteoblasts and osteoblast-like cells. In: Butler, W. T., ed. Chemistry and biology of mineralized tissues. Birmingham: Ebsco Media; 1985:279–285.

    Google Scholar 

  36. Maniatopoulos, C.; Sodek, J.; Melcher, A. H. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 254:317–330; 1988.

    Article  PubMed  CAS  Google Scholar 

  37. McCulloch, C. A. G.; Strugurescu, M.; Hughes, F., et al. Osteogenic progenitor cells in rat bone marrow stromal populations exhibit selfrenewal in culture. Blood 77:1906–1911; 1991.

    PubMed  CAS  Google Scholar 

  38. Michel, D.; Harmand, M. F. Fibrin seal in wound healing. Effect of thrombin and calcium on human skin fibroblast growth and collagen production. J. Dermatol. Sci. 1:325–334; 1990.

    Article  PubMed  CAS  Google Scholar 

  39. Nakahara, H.; Goldberg, V. M.; Caplan, A. I. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9:465–476; 1991.

    Article  PubMed  CAS  Google Scholar 

  40. Ohgushi, H.; Goldberg, V. M.; Caplan, A. I. Repair of bone defects with marrow cells and porous ceramic. Acta Orthop. Scand. 60(3):334–339; 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Owen, M. Lineage of osteogenic cells and their relationship to the stromal system. In: Peck, W. A., ed. Bone and mineral research. Amsterdam: Elsevier Science Publishers BV; 1985:3:1–25.

    Google Scholar 

  42. Owen, M. E.; Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenic precursors. In: Evered, D.; Harnett, S., eds. Cell and molecular biology of vertebrate hard tissues. New York: John Wiley & Sons; 1988:42–53.

    Google Scholar 

  43. Patt, A. M.; Maloney, M. A.; Flannery, M. L. Hematopoietic microenvironment transfer by stromal fibroblasts derived from bone marrow varying in cellularity. Exp. Hematol. 10:738–742; 1982.

    PubMed  CAS  Google Scholar 

  44. Reddi, A. H. Regulation of bone differentiation by local and systemic factors. In: Peck, W. A., ed. Bone and mineral research, 3. Amsterdam: Elsevier Science Publishers; 1985:27–47.

    Google Scholar 

  45. Robey, P. G.; Termine, J. D. Human bone cells in vitro. Calcif. Tissue Int. 37:453–460; 1985.

    Article  PubMed  CAS  Google Scholar 

  46. Rodan, G. A.; Rodan, S. B. Expression of the osteoblastic phenotype. In: Peck, W. A., ed. Bone and mineral research, vol. 2. Amsterdam: Elsevier Science Publishers; 1983:244–285.

    Google Scholar 

  47. Rodan, S. B.; Fisher, M. K.; Egan, J. J., et al. The effect of dexamethasone on parathyroid hormone stimulation of adenylate cyclase in ROS 17/2.8 cells. Endocrinology 115:951–958; 1984.

    Article  PubMed  CAS  Google Scholar 

  48. Rodan, G. A.; Heath, J. K.; Yoon, K., et al. Diversity of the osteoblastic phenotype. In: Evered, D.; Harnett, S., eds. Cell and molecular biology of vertebrate hard tissues. New York: John Wiley & Sons, 1988:78–85.

    Google Scholar 

  49. Satomura, K.; Hiraiwa, K.; Nagayama, M. Mineralized nodule formation in rat bone marrow stromal cell culture without β-glycerophosphate. Bone Miner. 14:41–54; 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Satomura, K.; Nagayama, M. Ultrastructure of mineralized nodules formed in rat bone marrow stromal cell culture in vitro. Acta Anat. 142:97–104; 1991.

    Article  PubMed  CAS  Google Scholar 

  51. Tsuji, T.; Hughes, F. J.; McCulloch, C. A. G., et al. Effects of donor age on osteogenic cells of rat bone marrow in vitro. Mech. Aging Dev. 51:121–132; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilamitjana-Amedee, J., Bareille, R., Rouais, F. et al. Human bone marrow stromal cells express an osteoblastic phenotype in culture. In Vitro Cell Dev Biol - Animal 29, 699–707 (1993). https://doi.org/10.1007/BF02631426

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631426

Key words

Navigation