Skip to main content
Log in

Characterization of human and rat immortalized clones of parotid acinar cells with respect to specific proteins and their mRNAs, and receptor-linked adenylate cyclase

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

This study reports the isolation and characterization of a rat nontumorigenic parotid acinar cell clone (2RSG), a human nontumorigenic parotid acinar cell clone (2HPC8), and a human tumorigenic acinar clone (2HP1G). The levels ofα-amylase mRNAs detected when usingα-amylase cDNA of 1176 and 702 bp for hybridization were higher in 2RSG and 2HPC8 cells than their respective whole parotid glands. The level of these mRNAs decreased in 2HP1G cells. In contrast toα-amylase mRNAs levels, theα-amylase activity in cultured acinar cells was extremely low in comparison to whole glands, irrespective of species or cell status. The levels of proline-rich protein (PRP) mRNA and parotid secretory protein (PSP) mRNA detected when using PRP cDNA of 600 bp and PSP cDNA of 805 bp for hybridization were higher in 2RSG cells than those in rat parotid glands; the reverse was observed in 2HPC8 cells and human parotid glands. The levels of PRP mRNA and PSP mRNA in 2HPC8 and 2HP1G acinar cells were similar. The level of mRNA was not detectable in murine neuroblastoma cells (NBP2) using the sameα-amylase cDNA, PRP cDNA and PSP cDNA for hybridization. The PSP level in rat parotid gland was lower than that found in 2RSG cells; the reverse was observed in 2HPC8 cells and human parotid glands. The level of PSP in 2HP1G cells was higher than that found in 2HPC8 cells. Isoproterenol increased the cAMP level in 2RSG, 2HPC8, and 2HP1G clones, being most effective in 2RSG cells, and least effective in 2HPG cells. Prostaglandin E1 (PGE1) also increased cAMP level, being most effective in 2HPC8 cells and ineffective in 2HP1G cells, suggesting that the PGE1 receptor-linked adenylate cyclase becomes inactive upon transformation. These results suggest that the three clonal acinar cells from rat and human parotid glands reported here can be useful in comparative studies on regulation of growth, differentiation, and transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baum, B. J.; Colpo, F. T.; Filburn, C. R. Characterization and relationship to exocrine secretion of rat parotid gland cyclic AMP-dependent protein kinase. Arch. Oral Biol. 26:333–337; 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Baum, B. J.; Frieberg, J. M., Ito, H., et al. Beta-adrenergic regulation of protein phosphorylation and its relationship to exocrine secretion in dispersed rat parotid gland acinar cells. J. Biol. Chem. 256:9731–9736; 1981.

    PubMed  CAS  Google Scholar 

  3. Brown, B. L.; Albano, J. D. M.; Ekins, R. P., et al. A simple and sensitive saturation assay method for the measurement of adenosine 3′,5′-cyclic monophosphate. Biochem. J. 121:561–562; 1971.

    PubMed  CAS  Google Scholar 

  4. Butcher, F. R.; Putney, J. R. Regulation of parotid gland functions by cyclic nucleotide and calcium. Adv. Cyclic Nucleotide Res. 13:215–249; 1980.

    PubMed  CAS  Google Scholar 

  5. Chomezymski, P.; Sacchi, N. Simple-step method of RNA isolation by acid guanidiumthiocyanate-phenol-chloroform extractions. Anal. Biochem. 162:156–159; 1987.

    Google Scholar 

  6. Chopra, D. P.; Xue-Hu, I. C. Secretion of alpha-amylase in human parotid gland epithelial cell culture. J. Cell. Physiol. 155:223–233; 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Harper, J. R. Stimulus-secretions coupling: Second messenger-regulated exocytosis. Adv. Second Messenger Phosphoprotein Res. 22:193–198; 1988.

    PubMed  CAS  Google Scholar 

  8. Jahn, R.; Unger, C.; Soling, H. D. Specific protein phosphorylation during stimulation of amylase secretion by beta-agonist or dibutyryl adenosine 3′,5′-monophosphate in the rat parotid gland. Eur. J. Biohem. 112:345–352; 1980.

    Article  CAS  Google Scholar 

  9. Kousvelari, E.; Tabak, L. A. Genetic regulation of salivary protein in rodents. Crit. Rev. Oral Biol. Med. 2:139–151; 1991.

    PubMed  CAS  Google Scholar 

  10. Leslie, B. A.; Putney, J. W.; Sherman, J. M. Alpha-adrenergic, betaadrenergic, and cholinergic mechanisms for amylase secretion by rat parotid glands in vitro. J. Physiol. 260:351–370; 1976.

    PubMed  CAS  Google Scholar 

  11. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  12. Mednieks, M. I.; Hand, A. R. Cyclic AMP-dependent protein kinase in stimulating rat parotid gland cells. Compartmental shifts after in vitro treatment with isoproterenol. Eur. J. Cell Biol. 28:264–271; 1982.

    PubMed  CAS  Google Scholar 

  13. Oliver, C.; Walters, J. F.; Tolbert, C. L., et al. Growth of exocrine acinar cells on a reconstituted basement membrane gel. In Vitro Cell. Dev. Biol. 23:456–473; 1987.

    Article  Google Scholar 

  14. Poulsen, K.; Jakobsen, K. B.; Nielsen, T. J., et al. Coordination of murine parotid secretory protein and salivary amylase expression. EMBO J. 5:1891–1896; 1986.

    PubMed  CAS  Google Scholar 

  15. Prasad, K. N.; Carvalho, E.; Edwards-Prasad, J., et al. Establishment of human parotid pleomorphic adenoma cells in culture: Morphological and biochemical characterization. In Vitro Cell. Dev. Biol. 30A:312–320; 1994.

    CAS  Google Scholar 

  16. Prasad, K. N.; Carvalho, E.; Edwards-Prasad, J., et al. Establishment and characterization of immortalized cell lines from rat parotid glands. In Vitro Cell. Dev. Biol. 30A:321–328; 1994.

    CAS  Google Scholar 

  17. Prasad, K. N.; Carvalho, E.; Kumar, S., et al. Relationship between adenosine 3′,5′-cyclic monophosphate level, cell proliferation, andα-amylase in rat parotid. Biochem. Cell Biol. 71:355–360; 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Quissell, D. O.; Deisher, L. M.; Barzen, K. A. The rate determining step in cAMP mediated exocitosis in the rat parotid and submandibular gland appears to involve analogous 26-KDa integral membrane phosphoproteins. Proc. Natl. Acad. Sci. USA 82:3237–3241; 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Sabatini, L. M.; Allen-Hoffman, B. L.; Varner, T. F., et al. Serial cultivation of epithelial cells from human and macaque salivary glands. In Vitro Cell. Dev. Biol. 27A:939–948; 1991.

    PubMed  CAS  Google Scholar 

  20. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning. A laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989.

    Google Scholar 

  21. Yeh, C. K.; Mertz, P. M.; Oliver, C., et al. Cellular characteristics of long-term cultured rat parotid acinar cells. In Vitro Cell. Dev. Biol. 27A:707–712; 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K.N., Kumar, S., Carvalho, E. et al. Characterization of human and rat immortalized clones of parotid acinar cells with respect to specific proteins and their mRNAs, and receptor-linked adenylate cyclase. In Vitro Cell Dev Biol - Animal 31, 767–772 (1995). https://doi.org/10.1007/BF02634118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634118

Key words

Navigation