Skip to main content
Log in

Factors influencing the strength differential of high strength steels

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Room temperature tensile and compressive true stress-true strain curves of various high strength steels (quenched and tempered 4340 steel, 410 martensitic stainless steel, and H-11 steel; and aged 300-grade 18 Ni maraging steel) were analyzed to determine the effect of the various microstructures, on what has been termed the strength differential (SD),i.e., the strength level difference between the tensile and compressive flow curves. Care was taken to insure that the compressive deformation was homogeneous. Regardless of the amount of plastic deformation, the quenched and tempered steels exhibited a higher flow stress in homogeneous compressive deformation than for tensile deformation. The extent of the SD was dependent on tempering temperature. This observation is consistent with what others have observed regarding yield strength behavior of quenched and quenched-and-tempered steels. Despite the low carbon content, aged maraging steel also showed a greater resistance to homogeneous compressive deformation. Metallographic examination of the maraging steel revealed the banding that is indicative of segregation. However, homogenization had little effect on the SD despite a change in austenite grain size, reverted austenite content, and the austenite-to-martensite transformational strains shown by Goldberg to be present in segregated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. A. Trozera:Trans. ASM, 1964, vol. 57, p. 309.

    Google Scholar 

  2. N. H. Polakowski:J. Iron Steel Inst., 1949, vol. 163, p. 250.

    Google Scholar 

  3. J. P. Hirth and M. Cohen:Met. Trans., 1970, vol. 1, p. 3.

    Article  Google Scholar 

  4. W. C. Leslie and R. J. Sober:Trans. ASM, 1967, vol. 60, p. 459.

    Google Scholar 

  5. R. Chait: Ph.D. Dissertation, Syracuse University, 1967.

  6. G. I. Taylor and H. Quinney:Proc. Roy. Society (London), 1934, vol. 143, p. 307.

    Article  Google Scholar 

  7. L. A. Yerkovich and G. J. Guarnieri:Proc. ASTM, 1955, vol. 55, p. 732.

    Google Scholar 

  8. H. Meyer and F. Nehl:Stahl Eisen, 1925, vol. 45, p. 1961.

    Google Scholar 

  9. G. W. Powell, E. R. Marshall, and W. A. Backofen:Proc. ASTM, 1955, vol. 55, p. 797.

    Google Scholar 

  10. R. Beeuwkes, Jr.: private communication; see also A. A. Warnas: Technical Report No. AMRA 64-35, Army Materials and Mechanics Research Center, Watertown, Massachusetts, October, 1964.

  11. E. Siebel:StahlEisen, 1923, vol. 43, p. 1295.

    Google Scholar 

  12. R. Hill:The Mathematical Theory of Plasticity, p. 277, Oxford University Press, London, 1950.

    Google Scholar 

  13. G. T. van Rooyen and W. A. Backofen:Int. J. Mech. Sci, 1960, vol. 1, pp. 1.

    Article  Google Scholar 

  14. G. W. Pearsall and W. A. Backofen:Trans. ASME, 1963, vol. 85B, p. 68.

    Google Scholar 

  15. E. Rabinowicz:Friction and Wear of Materials, p. 82, John Wiley and Sons, Inc., New York, 1965.

  16. D. Lee, T. Sata and W. A. Backofen:J. Inst. Met., 1965, vol. 93, p. 418.

    Google Scholar 

  17. R. Lenhart:The Deformation of Polycrystalline Mg-Al Alloys, WADCTech. Rep. No. 55-112, Wright-Patterson Air Force Base, Dayton, Ohio, May 1955.

  18. R. J. Olsen and G. S. Ansell:Trans. ASM, 1969, vol. 62, p. 711.

    Google Scholar 

  19. J. W. Gant:J. Iron and Steel Inst., 1951, vol. 168, p. 263.

    Google Scholar 

  20. G. W. Powell, E. R. Marshall and W. A. Backofen:Trans. ASM, 1958, vol. 50, p. 478.

    Google Scholar 

  21. G. C. Rauch and W. C. Leslie:Met. Trans., 1972, vol. 3, pp. 373–85.

    Article  Google Scholar 

  22. D. Kalish and M. Cohen:Trans. ASM, 1969, vol. 62, p. 353.

    Google Scholar 

  23. G. P. Contractor, E. G. Schempp and W. A. Morgan:Trans. ASM, 1961, vol. 54, p. 208.

    Google Scholar 

  24. J. E. Campbell, F. J. Barone, and D. P. Moon: The Mechanical Properties of 18% Nickel Maraging Steels, DMIC Rept. No. 198, February, 1964.

  25. A. Goldberg:Trans. ASM, 1969, vol. 62, p. 219.

    Google Scholar 

  26. D. T. Peters:Trans. ASM, 1968, vol. 61, p. 62.

    Google Scholar 

  27. R. L. Miller:Trans. ASM, 1964, vol. 57, p. 892.

    Google Scholar 

  28. P. H. Salmon Cox, B. C. Reisdorf and G. E. Pellissier:Trans. TMS-AIME, 1967, vol. 239, p. 1809.

    Google Scholar 

  29. A. Goldberg:J. Iron Steel Inst., 1970, vol. 208, p. 289.

    Google Scholar 

  30. P. C. Maxwell, A. Goldberg and J. C. Shyne:Met. Trans., 1970, vol. 1, p. 2759.

    Google Scholar 

  31. S. Floreen:Met. Rev., 1968, vol. 13, no. 126, p. 115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chait, R. Factors influencing the strength differential of high strength steels. Metall Trans 3, 369–375 (1972). https://doi.org/10.1007/BF02642040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642040

Keywords

Navigation