Skip to main content
Log in

Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology

  • Communication
  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Summary

It is noted that at near-threshold levels, in addition to the role of plasticity-and oxide-induced crackclosure, fracture surface roughness or morphology may promote significant closure effects in plane strain, as similarly noted by Minakawa and McEvily.This is considered to result from the fact that, where maximum plastic zones sizes are small compared to the grain size, fatigue crack growth proceeds by a single shear decohesion mechanism (Stage I) with associated Mode II+I displacements. The resulting serrated or faceted fracture surfaces (“microstructurally-sensitive growth”) coupled with Mode II crack tip displacements thus induce high closure loads (i.e., K cl/K max ~0.5) by wedging the crack open at discrete contact points. At higher growth rates where the plastic zone encompasses many grains, striation growthvia alternating or simultaneous shear mechanisms (Stage II) produces a more planar fracture surface, with pure Mode I displacements, and a corresponding reduction in closure loads. Such concepts of roughness-induced closure are shown to be consistent with observations of the role of coarse grain sizes in reducing near-threshold crack growth rates at low load ratios and of the absence of this effect at high load ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A.J. McEvily:Metal Sci., 1977, vol. 11, p. 274.

    CAS  Google Scholar 

  2. N. Walker and C. J. Beevers:Fat. Eng. Mat. Struct., 1979, vol. 1, p. 135.

    Article  CAS  Google Scholar 

  3. C. J. Beevers:Metal Sci., 1980, vol. 14, p. 418.

    CAS  Google Scholar 

  4. R. O. Ritchie, S. Suresh, and C. M. Moss:J. Eng. Mat. Tech. Trans. ASME Series H, 1980, vol. 102, p. 293.

    CAS  Google Scholar 

  5. A.T. Stewart:Eng. Fract. Mech., 1980, vol. 13, p. 463.

    Article  CAS  Google Scholar 

  6. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, p. 1435.

    Google Scholar 

  7. R. O. Ritchie: inFatigue Thresholds, Proceedings 1st Intl. Conf., Stockholm, J. Bäcklund, A. Blom, and C. J. Beevers, eds., EMAS Publ. Ltd., Warley, U.K., 1981.

    Google Scholar 

  8. S. Suresh, D. M. Parks, and R. O. Ritchie:ibid.

  9. B.L. Freeman, P. Smith, and A.T. Stewart:ibid.

  10. K. Minakawa and A.J. McEvily:ibid.

  11. G. T. Gray, A. W. Thompson, J. C. Williams, and D. H. Stone:ibid.

  12. I.C. Mayes and T. J. Baker:Fat. Eng. Mat. Tech., 1981, vol. 4, p. 79.

    Article  CAS  Google Scholar 

  13. K. Minakawa and A.J. McEvily:Scripta Met., 1981, vol. 15, p. 633.

    Article  Google Scholar 

  14. W. Elber: inDamage Tolerance in Aircraft Structures, ASTM STP 486, 1971, p. 280.

  15. E. F. J. von Euw, R. W. Hertzberg, and R. Roberts: inStress Analysis and Growth of Cracks, ASTM STP 513, 1972, p. 230.

  16. T. C. Lindley and C. E. Richards:Mater. Sci. Eng., 1974, vol. 14, p. 281.

    Article  CAS  Google Scholar 

  17. B. Budiansky and J. W. Hutchinson:J. Appl. Mech., Trans. ASME Series E, 1978, vol. 45, p. 267.

    Google Scholar 

  18. D. Benoit, R. Namdar-Tixier, and R. Tixier:Mater. Sci. Eng., 1981, vol. 45, p. 1.

    Google Scholar 

  19. D. L. Davidson:Fat. Eng. Mat. Tech., 1981, vol. 3, p. 229.

    Article  Google Scholar 

  20. R. J. Asaro, L. Hermann, and J. M. Baik:Metall. Trans. A, 1981, vol. 12A, p. 1135.

    Google Scholar 

  21. S. Purushothaman and J. K. Tien: inStrength of Metals and Alloys, Proc. ICSMA5 Conf., Pergamon Press, New York, NY, 1979, vol. 2, p. 1267.

    CAS  Google Scholar 

  22. B. Tomkins:Metal Sci., 1979, vol. 13, p. 387.

    CAS  Google Scholar 

  23. P. J. E. Forsyth: inCrack Propagation, Proc. Symp., Cranfield, College of Aeronautics, Cranfield Press, 1962, p. 76.

  24. A. Ohtsuka, K. Mori, and T. Miyata:Eng. Fract. Mech., 1975, vol. 7, p. 429.

    Article  Google Scholar 

  25. B. Tomkins and W. D. Biggs:J. Mater. Sci., 1969, vol. 4, p. 544.

    Article  CAS  Google Scholar 

  26. R. M. N. Pelloux:Eng. Fract. Mech., 1970, vol. 1, p. 697.

    Article  Google Scholar 

  27. P. Neumann:Zeitschrift f. Metallkunde, 1967, vol. 11, p. 780.

    Google Scholar 

  28. P. C. Paris and L. Hermann:Proc. Intl. Cong. Theor. Appl. Mech., Delft, W. T. Koiter, ed., North-Holland, Amsterdam, 1977.

  29. R.J. Cooke and C.J. Beevers:Mater. Sci. Eng., 1974, vol. 13, p. 201.

    Article  CAS  Google Scholar 

  30. C.J. Beevers:Metal Sci., 1977, vol. 11, p. 362.

    CAS  Google Scholar 

  31. R. O. Ritchie:Int. Metals Rev., 1979, vol. 20, p. 205.

    Google Scholar 

  32. G.R. Yoder, L. A. Cooley, and T. W. Crooker:Metall. Trans. A, 1978, vol. 9A, p. 1413.

    CAS  Google Scholar 

  33. J. D. Frandsen and H. L. Marcus:Scripta Met., 1975, vol. 9, p. 1089.

    Article  CAS  Google Scholar 

  34. R.M.N. Pelloux: inUltrafine-Grain Metals, Syracuse Univ. Press, 1970, p. 231.

  35. A. W. Thompson and R.J. Bucci:Metall. Trans., 1973, vol. 4, p. 1173.

    Article  CAS  Google Scholar 

  36. E.K. Priddle:Scripta Met., 1977, vol. 11, p. 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

R. O. RITCHIE and S. SURESH, both formerly with Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.O., Suresh, S. Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology. Metall Trans A 13, 937–940 (1982). https://doi.org/10.1007/BF02642409

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642409

Keywords

Navigation