Skip to main content
Log in

Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The initiation of a crack in a specimen under tensile or compressive stresses is treated from the point of view of perturbation analysis. A surface distortion is Fourier analyzed into a series of waves and the amplitude response of a single component of varying frequency is theoretically investigated. The response of the individual components yields a Griffith-type criterion for wave amplitude growth. The model is applied to alloy systems undergoing stress corrosion cracking via surface diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. N. Pugh: inProc. Conf. on Environment-Sensitive Mechanical Behavior, Baltimore, Maryland, 1965, and E. N. Pugh, J. N. Craig, and A. J. Sedriks: inProc. on First Conf. on Fundamental Aspects of Stress Corrosion Cracking, NACE, p. 118, Ohio State Univ., 1969.

  2. R. M. Latanision and R. W. Staehle: inProc. on First Conf. on Fundamental Aspects of Stress Corrosion Cracking, NACE, p. 217, Ohio State Univ., 1969.

  3. H. H. Uhlig: inProc. on First Conf. on Fundamental Aspects of Stress Corrosion Cracking, NACE, p. 86, Ohio State Univ., 1969.

  4. S. Chandrasekhar:Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, 1961.

  5. I. S. Sokolnikoff:Mathematical Theory of Elasticity, McGraw-Hill, 1956.

  6. J. R. Rice and D. C. Drucker:Int. J. Frac. Mech., 1967, vol. 3, p. 19.

    Google Scholar 

  7. J. W. Gibbs:The Collected Works, Vol. I, Longmans, Green, and Company, New York, 1928.

    Google Scholar 

  8. Ling Yang, G. T. Home, and G. M. Pound:Proc. Symp. on the Physical Metallurgy of Stress Corrosion Cracking, AIME Met. Soc. Conf., 1959, vol. 4, pp. 29–46.

    Google Scholar 

  9. Matthew Creager and P. Paris:Int. J. Fract. Mech., 1967, vol. 3, p. 247.

    Article  Google Scholar 

  10. G. F. Boiling and W. A. Tiller:J. Appl. Phys., 1961, vol. 32, p. 2587.

    Article  Google Scholar 

  11. N. A. Gjostein: inMetal Surfaces, ASM, Metals Park, Ohio, 1963.

    Google Scholar 

  12. H. P. Bonzel and N. A. Gjostein:Appl. Phys. Lett., 1967, vol. 10, p. 258.

    Article  Google Scholar 

  13. H. P. Bonzel and N. A. Gjostein:J. Appl. Phys., 1968, vol. 29, p. 3480.

    Article  Google Scholar 

  14. W. E. Hillig and R. J. Charles: inHigh-Strength Materials, V. F. Zackay, ed., John Wiley, New York, 1965.

    Google Scholar 

  15. W. W. Mullins and R. F. Sekerka:J. Appl. Phys., 1964, vol. 35, p. 444.

    Article  Google Scholar 

  16. W. W. Mullins:J. Appl. Phys., 1957, vol. 28, p. 335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asaro, R.J., Tiller, W.A. Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion. Metall Trans 3, 1789–1796 (1972). https://doi.org/10.1007/BF02642562

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642562

Keywords

Navigation