Skip to main content
Log in

Compositional effects on the high temperature ductility of 1 Cr-1.25 Mo-0.25 V Steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This paper describes the results of slow strain rate (ε = 4.4 × 10-5 s-1) tensile tests performed at temperatures between 25 and 700 °C on a high purity CrMoV steel containing various dopants. The materials all had a bainitic microstructure, a hardness of RC28, and a grain size of ASTM 0. Some samples were step cooled prior to tensile testing. Four different compositions were tested: undoped (HP), Mn + P doped (MnP), P doped (P), and Sn doped (Sn) materials. All four materials failed in a low ductility cleavage mode at low temperatures and by a low ductility grain boundary cavitation mode at high temperatures. At intermediate temperatures, around 500 °C, the MnP material showed the highest ductility, the HP and Sn materials showed the lowest, and the P material was intermediate. The beneficial effects of both Mn and P on the creep ductility are rationalized in terms of their control of the sulfur concentration on prior austenite boundaries. In addition, it is suggested that P on the grain boundaries can reduce the cavitation rate by reducing the grain boundary self diffusion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Perry:J. of Mat. Sci., 1974, vol. 9, p. 1016.

    Article  CAS  Google Scholar 

  2. L. E. Svenson and G. L. Dunlop:Canadian Met. Quarterly, 1979, vol. 18, p. 39.

    Google Scholar 

  3. L. E. Svenson and G. L. Dunlop:Int. Met. Rev., 1981, vol. 26, p. 109.

    Google Scholar 

  4. M. F. Ashby, G. Ghandhi, and D. M. R. Taplin:Acta Met., 1979, vol. 27, p. 699.

    Article  CAS  Google Scholar 

  5. B. F. Dyson:Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D. R. J. Owen, eds., Pineridge Press, Swansea, 1981, p. 235.

    Google Scholar 

  6. D. P. Pope and D. S. Wilkinson:Creep and Fracture Engineering Materials and Structures, B. Wilshire and D.R. J. Owen, eds., Pineridge Press, Swansea, 1981, p. 531.

    Google Scholar 

  7. L. M. T. Hopkin:J. Instit. Metals, 1956, vol. 85, p. 422.

    Google Scholar 

  8. D. McLean:J. Instit. Metals, 1956, vol. 85, p. 468.

    Google Scholar 

  9. M. P. Seah:Philos. Trans. R. Soc. London A, 1980, vol. 295, p. 265.

    CAS  Google Scholar 

  10. D. S. Wilkinson, K. Abiko, N. Thyagarajan, and D. P. Pope:Metall. Trans. A, 1980, vol. 11A, p. 1827.

    CAS  Google Scholar 

  11. A. S. Argon, I. W. Chen, and C. W. Lau:Creep-Fatigue-Environment-lnteractions, R. M. Pelloux and N. S. Stoloff, eds., TMS-AIME, New York, NY, 1980, p. 46.

    Google Scholar 

  12. T. Takasugi and V. Vitek:Metall. Trans. A, 1981, vol. 12A, p. 659.

    Google Scholar 

  13. J. Yu and C. J. McMahon, Jr.:Metall. Trans. A, 1980, vol. 11A, p. 277.

    CAS  Google Scholar 

  14. J. Yu and C. J. McMahon, Jr.:Metall. Trans. A, 1980, vol. 11A, p. 291.

    CAS  Google Scholar 

  15. E. D. Hondros and M. P. Seah:Scr. Met., 1972, vol. 6, p. 1007.

    Article  CAS  Google Scholar 

  16. B. D. Powell, H. J. Westwood, D. M. R. Taplin, and H. Mykura:Metall. Trans., 1973, vol. 4, p. 2357.

    CAS  Google Scholar 

  17. T. Watanabe and K. Yamamoto:Tetsu to Hagane, 1975, vol. 61, p. S730.

    Google Scholar 

  18. T. Watanabe, K. Yamamoto, M. Nanun, and M. Ueno:Tetsu to Hagane, 1976, vol. 62, p. S373.

    Google Scholar 

  19. H. J. Grabke, W. Paulitschke, G. Tauber, and H. Viefhaus:Surface Sci., 1977, vol. 63, p. 377.

    Article  CAS  Google Scholar 

  20. C. L. Briant and S. K. Banerji:Metall. Trans. A, 1979, vol. 10A, p. 1151.

    CAS  Google Scholar 

  21. C. L. Briant and S. K. Banerji:Metall. Trans. A, 1981, vol. 12A, p. 309.

    Google Scholar 

  22. J. C. Murza and C. J. McMahon, Jr.: University of Pennsylvania, Philadelphia, PA, unpublished research, 1979.

  23. R. Plkington, G. Willoughby, and J. Barford:Metal Sci. J., 1971, vol. 5, p. 1.

    Article  Google Scholar 

  24. C. D. Joy and J. Nutting:Effect of second-phase particles on the mechanical properties of steel, London, The Iron and Steel Institute, 1971, p. 95.

    Google Scholar 

  25. D. Hull and D. E. Rimmer:Phil. Mag., 1959, vol. 4, p. 673.

    CAS  Google Scholar 

  26. T. J. Chuang and J. R. Rice:Acta Met., 1973, vol. 21, p. 1625.

    Article  Google Scholar 

  27. G. M. Pharr and W. D. Nix:Acta Met., 1979, vol. 27, p. 1615.

    Article  CAS  Google Scholar 

  28. D. Gupta:Metall. Trans. A, 1977, vol. 8A, p. 1431.

    CAS  Google Scholar 

  29. E. T. Turkdogan, S. Ignatowicz, and J. Pearson:JISI, 1955, vol. 180, p. 349.

    CAS  Google Scholar 

  30. C. J. Middleton:Metal Sci., 1981, vol. 15, p. 154.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasugi, T., Pope, D.P. Compositional effects on the high temperature ductility of 1 Cr-1.25 Mo-0.25 V Steel. Metall Trans A 13, 1471–1481 (1982). https://doi.org/10.1007/BF02642886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642886

Keywords

Navigation