Skip to main content
Log in

Thermodynamic properties of solid alloys of chromium with nickel and iron

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The thermodynamic properties of chromium have been determined in the Ni-Cr and Fe-Cr binary systems and in the Fe-corner of the Fe-Ni-Cr system. These properties are based on experimental measurements using solid oxide electrolyte cells of the type: Cr, Cr2O3 I ThO2-Y2O3Cr (alloy), Cr2O3. In the Ni-Cr system, between 900 and 1300°, the activity of chromium exhibits negative deviation from ideality up to about 25 at. pct chromium. For alloys higher in chromium content, the activity of chromium exhibits positive deviation from ideality. In the Fe-Cr system, between 900 and 1200°, and 0 and 63 at. pct Cr, the chromium activity when referred to solid pure chromium exhibits positive deviation from ideality in both the γ and α phases, approaching ideality with increasing temperature. The nickel and iron activities in these two respective binary systems were calculated by a Gibbs-Duhem integration. The activity of chromium, referred to solid pure chromium, was measured between 900 and 1200° in solid Fe-Ni-Cr alloys with chromium concentrations of 9, 20, and 30 at. pct and Ni concentrations of 8, 18, and 30 at. pct. Additions of nickel to Fe-Cr alloys in the above concentration range are found to increase the chromium activity. The effect of nickel in increasing the chromium activity is greater at both greater chromium contents and lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Grube and M. Flad:Z. Elektrochem., 1942, vol. 48, p. 377.

    CAS  Google Scholar 

  2. M. B. Panish, R. F. Newton, W. R. Grimes, and F. F. Blankenship:J. Phys. Chem., 1958, vol. 62, p. 980.

    Article  CAS  Google Scholar 

  3. 0. Kubaschewski, W. A. Dench, and G. Heymer:Z. Elektrochem., 1960, vol. 64, p. 801.

    CAS  Google Scholar 

  4. L. A. Pugliese and G. R. Fitterer:Met. Trans., 1970, vol. 1, p. 1997.

    CAS  Google Scholar 

  5. 0. Kubaschewski and G. Heymer:Acta Met., 1960, vol. 8, p. 416.

    Article  CAS  Google Scholar 

  6. Y. Jeannin, C. Mannerskantz, and F. D. Richardson:Trans. TMS-AIME, 1963, vol. 227, p. 300.

    CAS  Google Scholar 

  7. E. Z. Vintaikin:Doklady Akad. Nauk, 1958, vol. 118, p. 977.

    CAS  Google Scholar 

  8. L. McCabe, R. G. Hudson, and H. W. Paxton:Trans. TMS-AIME, 1958, vol. 212, p. 102.

    CAS  Google Scholar 

  9. R. B. Reese, R. A. Rapp, and G. R. St. Pierre:Trans. TMS-AIME, 1968, vol. 242, p. 1719.

    CAS  Google Scholar 

  10. P. C. Lidster and H. B. Bell:Trans. TMS-AIME, 1969, vol. 245, p. 2273.

    CAS  Google Scholar 

  11. W. Slough, P. J. Spencer, and O. Kubaschewski:J Chem. Thermo., 1970, vol. 2, p. 117.

    Article  CAS  Google Scholar 

  12. M. Hansen:Constitution of Binary Equilibrium Diagrams, McGraw-Hill, New York, 1958.

    Google Scholar 

  13. V. J. D. Tretjakow and H. Schmalzried:Z. Elektrochem., 1965, vol. 69, p. 396.

    Google Scholar 

  14. R. A. Rapp and D. A. Shores:Physiochemical Measurements in Metals Research, Vol. IV, Part 2 of Techniques in Metals Research, Wiley-Interscience, 1970, p. 123.

  15. M. F. Lasker and R. A. Rapp:Z. Phys. Chem. Neue Folge, 1966, vol. 49, p. 198.

    CAS  Google Scholar 

  16. W. D. Kingery, J. Pappis, M. E. Doty, and D. C. Hill:J. Am. Ceram. Soc., 1959, vol. 42, p. 393.

    Article  CAS  Google Scholar 

  17. B. C. H. Steele and C. B. Alcock:Trans. TMS-A1ME, 1965, vol. 233, p. 1359.

    CAS  Google Scholar 

  18. J. W. Patterson, E. C. Borgen, and R. A. Rapp:J. Electrochem. Soc., 1967, vol. 114, p. 752.

    Article  CAS  Google Scholar 

  19. J. M. Wimmer, L. R. Bidwell, and N. M. Tallan:J. Amer. Ceram. Soc, 1967, vol. 50, p. 198.

    Article  CAS  Google Scholar 

  20. C. B. Alcock and S. Zador:Electrochem. Acta, 1967, vol. 12, p. 673.

    Article  CAS  Google Scholar 

  21. F. N. Mazandarany: Ph.D. Thesis, The University of Michigan, 1972.’

  22. D. S. Bloom and N. J. Grant:Trans. AIME, 1951, vol. 191, p. 1009.

    Google Scholar 

  23. C. Stein and N. J. Grant:Trans. AIME, 1955, vol. 203, p. 127.

    Google Scholar 

  24. W. A. Dench:Trans. Faraday, 1962, vol. 59, p. 1279.

    Article  Google Scholar 

  25. L. S. Darken:J. Amer. Chem. Soc, 1950, vol. 72, p. 2909.

    Article  CAS  Google Scholar 

  26. L. S. Darken and R. W. Gurry:Phys. Chem. of Metals, McGraw-Hill, New York, 1953, p. 235.

    Google Scholar 

  27. C. H. M. Jenkins, E. H. Bucknel, C. R. Austin, and G. A. Mellor:J. Iron Steel Inst., London, 1937, vol. 136, p. 187.

    Google Scholar 

  28. B. Fleischer and J. F. Elliott:The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, A Symposium, Vol. I, Chemical Publishing Co., 1960, p. 222.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student at The University of Michigan, is Staff Associate, Gulf Energy and Environmental Systems, LaJolla, California.

This paper is based on a portion of a thesis submitted by F. N. MAZANDARANY in partial fulfillment of the requirements for the degree Doctor of Philosophy at The University of Michigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazandarany, F.N., Pehlke, R.D. Thermodynamic properties of solid alloys of chromium with nickel and iron. Metall Trans 4, 2067–2076 (1973). https://doi.org/10.1007/BF02643269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643269

Keywords

Navigation