Skip to main content
Log in

Crack and cavity nucleation at interfaces during creep

  • Symposium on The Role of Trace Elements and Interfaces in Creep Failure
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Athermal nucleation of microcracks and thermal nucleation of cavities during creep deformation are reviewed with an emphasis on effects of solute segregation to grain boundaries and cavity surfaces. The magnitude and the duration of stress concentration at a triple grain junction or at a grain boundary inclusion are estimated for transient Coble creep and steady state power-law creep conditions. Stable configurations of wedge-type microcracks are predicted by a Griffith-like crack model. The rate for thermal nucleation of cavities is obtained by the Fokker-Planck equation for vacancy clusters. Cracks and cavities are interdependent, and cavity nucleation occurs continuously throughout the three creep stages. The local stress concentration enhances microcrack and cavity nucleation. The cavity nucleation rate is generally increased as a result of solute segregation to the surfaces and interfaces and/or gas precipitation into cavity volume. This enhanced nucleation is more effective in a system with mobile solutes than with immobile solutes. Immobile solute or trace elements may affect the nucleation rate also by changing the grain boundary diffusivity. Experimental techniques for quantitative analyses of cavity nucleation processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Servi and N.J. Grant:Trans. AIME, 1951, vol. 191, pp. 909–16, 917–22.

    Google Scholar 

  2. J.N. Greenwood, D.R. Miller, and J.W. Suiter:Acta Met., 1954, vol. 2, pp. 250–58.

    Article  CAS  Google Scholar 

  3. R. W. Balluffi and L. L. Seigle:Acta Met., 1955, vol. 3, pp. 170–77.

    Article  Google Scholar 

  4. E.S. Machlin:Trans. AIME, 1956, vol. 206, pp. 106–11.

    Google Scholar 

  5. R. D. Gifkins:Acta Met., 1956, vol. 4, pp. 98–99.

    Article  Google Scholar 

  6. A.J. Perry:J. Mater. Sci., 1974, vol. 9, pp. 1016–39.

    Article  CAS  Google Scholar 

  7. W. D. Nix, K.S. Yu, and J. S. Wang:Metall. Trans. A, 1983, vol. 14A, p. 563.

    Google Scholar 

  8. R. Raj:Acta Met., 1978, vol. 26, pp. 995–1006.

    Article  CAS  Google Scholar 

  9. G.W. Greenwood:Phil. Trans., 1978, vol. A288, pp. 213–27.

    Google Scholar 

  10. B.J. Cane:Metal Sci. J., 1978, vol. 12, pp. 102–08.

    CAS  Google Scholar 

  11. D. M. R. Taplin and A. L. W. Collins:Ann. Rev. Mater. Sci., 1978, vol. 8, pp. 235–68.

    Article  CAS  Google Scholar 

  12. S.H. Goods and L. M. Brown:Acta Met., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  13. L. E. Svensson and G. L. Dunlop:Can. Metall. Quart., 1979, vol. 18, pp. 39–47.

    CAS  Google Scholar 

  14. H. Trinkaus and H. Ullmaier:Phil. Mag., 1979, vol. 39, pp. 563–80.

    CAS  Google Scholar 

  15. A.S. Argon, L.W. Chen, and C.W. Lau: inCreep, Fatigue, and Environmental Interadions, R. M. N. Pelloux and N. Stoloff, eds., Spec. Publ., TMS-AIME, Warrendale, PA, 1980, pp. 46–85.

    Google Scholar 

  16. R. Raj and S. Baik:Metal Sci. J., 1980, vol. 14, pp. 385–94.

    Google Scholar 

  17. A. G. Evans, J. R. Rice, and J. P. Hirth:J. Amer. Ceram. Soc., 1980, vol. 63, pp. 368–75.

    Article  CAS  Google Scholar 

  18. W. Beere: inCavities and Cracks in Creep andFatigue, J. Gittus, ed., Appl. Sci. Publ., London, 1981, pp. 1–27.

    Google Scholar 

  19. K. Shiozawa and J.R. Weertman:Scripta Met., 1981, vol. 15, pp. 1241–44.

    Article  CAS  Google Scholar 

  20. R. Raj:Metall. Trans. A, 1975, vol. 6A, pp. 1499–1509.

    Google Scholar 

  21. R. Raj and M.F. Ashby:Metall. Trans., 1971, vol. 2, pp. 1113–27.

    Google Scholar 

  22. C.W. Lau and A. S. Argon: inFracture, D. M.R. Taplin, ed., University of Waterloo Press, Waterloo, Canada, 1977, vol. 2, pp. 595–601.

    Google Scholar 

  23. C. W. Lau: Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1981.

    Google Scholar 

  24. T.J. Chuang, K.I. Kagawa, J.R. Rice, and L.B. Sills:Acta Met., 1979, vol. 27, pp. 265–84.

    Article  CAS  Google Scholar 

  25. A. Needleman and J.R. Rice:Acta Met., 1980, vol. 28, pp. 1315–32.

    Article  CAS  Google Scholar 

  26. W. D. Nix and B. Ilschner: Proc. of Fifth Int. Conf. onThe Strength of Metals and Alloys, Aachen, West Germany, August 27-31, 1979, Pergamon Press, P. Haasen, V. Gerold, and G. Kostorz, eds., 1980, vol. 3, pp. 1503–30.

    Google Scholar 

  27. R.C. Koehler and R. Raj:Acta Met., 1978, vol. 26, pp. 1551–58.

    Article  Google Scholar 

  28. T. Mori, M. Okabe, and T. Mura:Acta Met., 1980, vol. 28, pp. 319–25.

    Article  Google Scholar 

  29. E. Smith and J. T. Barnby:Met. Sci. J., 1967, vol. 1, pp. 1–4.

    Article  CAS  Google Scholar 

  30. T. Watanabe:Metall. Trans. A, 1983, vol. 14A, p. 531.

    Google Scholar 

  31. T. Saegusa and J.R. Weertman:Scripta Met., 1978, vol. 12, pp. 187–91.

    Article  CAS  Google Scholar 

  32. B.F. Dyson, M.S. Loveday, and M.J. Rodgers:Proc. R.Soc, 1976, vol. 349A, pp. 245–59.

    Google Scholar 

  33. C.J. McMahon and V. Vitek:Acta Met., 1979, vol. 27, pp. 507–13.

    Article  CAS  Google Scholar 

  34. M. Kikuchi, K. Shiozawa, and J.R. Weertman:Acta Met., 1981, vol. 29, pp. 1747–58.

    Article  CAS  Google Scholar 

  35. R.G. Fleck, D.M.R. Taplin, and C.J. Beevers:Acta Met., 1975, vol. 23, pp. 415–24.

    Article  CAS  Google Scholar 

  36. R. N. Stevens and R. Dutton:Mater. Sci. and Eng., 1971, vol. 8, pp. 220–34.

    Article  CAS  Google Scholar 

  37. R. W. Lardner: inMathematical Theory of Dislocations and Fracture, University of Toronto Press, 1974, pp. 215–42.

  38. A.G. Evans:Acta Met., 1980, vol. 28, pp. 1155–63.

    Article  Google Scholar 

  39. R. Bullough:Phil. Mag., 1964, vol. 9, pp. 917–25.

    Google Scholar 

  40. G. Gandhi and R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 515–20.

    Google Scholar 

  41. T. Ya Benieva and I.G. Polotskii:Fiz. Met. Metall., 1961, vol. 12, pp. 584–94.

    CAS  Google Scholar 

  42. M.F. Ashby:Surface Sci., 1972, vol. 31, pp. 498–542.

    Article  CAS  Google Scholar 

  43. J.P. Hirth and J.R. Rice:Metall. Trans. A, 1980, vol. 11A, pp. 1501–11.

    CAS  Google Scholar 

  44. M.P. Seah:Acta Met., 1980, vol. 28, pp. 955–62.

    Article  CAS  Google Scholar 

  45. C.L. White: Proc. of the First Int. Conf. onAluminum-Lithium Alloys, T.H. Sanders, Jr. and E. A. Starke, Jr., eds., AIME Spec. Publ., TMS-AIME, Warrendale, PA, 1980, pp. 141–70.

    Google Scholar 

  46. D.D. Mason:Phil. Mag., 1979, vol. 39, pp. 455–68.

    CAS  Google Scholar 

  47. E. D. Hondros and P. J. Henderson:Metall. Trans. A, 1983, vol. 14A, p. 521.

    Google Scholar 

  48. K. Binder and D. Shauffer:Adv. in Phys., 1976, vol. 25, pp. 343–96.

    Article  CAS  Google Scholar 

  49. R. Becker and W. Doring:Ann. Phys., 1935, vol. 24, pp. 719–52.

    Article  CAS  Google Scholar 

  50. R. Raj and M.F. Ashby:Acta Met., 1975, vol. 23, pp. 653–66.

    Article  Google Scholar 

  51. H. Trinkaus and H. Ullmair:J. Nucl. Mater., 1979, vols. 85 and 86, pp. 823–27.

    Article  Google Scholar 

  52. J.B. Zeldovich:J. Exp. Theor. Phys., 1942, vol. 12, p. 525.

    CAS  Google Scholar 

  53. K.C. Russell:Acta Met., 1978, vol. 26, pp. 1615–30.

    Article  CAS  Google Scholar 

  54. M.C. Inman, D. McLean, and H.R. Tipler:Proc. R. Soc, 1963, vol. A273, pp. 538–57.

    Google Scholar 

  55. C.L. White, J.H. Schneibel, and R.A. Padgett:Metall. Trans. A, 1983, vol. 14A, p. 595.

    Google Scholar 

  56. H. Reiss:J. Chem. Phys., 1950, vol. 18, pp. 840–48.

    Article  CAS  Google Scholar 

  57. B.T.M. Loh:Acta Met., 1972, vol. 20, pp. 1305–11.

    Article  CAS  Google Scholar 

  58. D. Stauffer:J. Aerosol Sci., 1976, vol. 7, pp. 319–33.

    Article  CAS  Google Scholar 

  59. K. Kremer:J. Aerosol Sci., 1978, vol. 9, pp. 243–46.

    Article  Google Scholar 

  60. H. Trinkaus:Phys. Rev. B, in press.

  61. T. J. Chuang and J.R. Rice:Acta Met., 1973, vol. 21, pp. 1625–28.

    Article  Google Scholar 

  62. G.N. Pharr and W.D. Nix:Acta Met., 1979, vol. 27, pp. 1615–31.

    Article  CAS  Google Scholar 

  63. L. Martinez and W. D. Nix:Metall. Trans. A, 1982, vol. 13A, pp. 427–37.

    CAS  Google Scholar 

  64. J.O. Stiegler, K. Farrell, B.T.M. Loh, and H.E. McCoy:Trans. ASM, 1967, vol. 60, pp. 494–503.

    CAS  Google Scholar 

  65. I. W. Chen and A. S. Argon:Acta Met., 1981, vol. 29, pp. 1321–33.

    Article  CAS  Google Scholar 

  66. D. S. Wilkinson and V. Vitek:Cavities and Cracks in Creep and Fatigue, John Gittus, ed., Appl. Sci. Publ., London, 1981, pp. 243–58.

    Google Scholar 

  67. D.A. Miller and R. Pilkington:Metall. Trans. A, 1980, vol. 11A, pp. 177–80.

    CAS  Google Scholar 

  68. C. L. White and R. A. Padgett:Acta Met., in press.

  69. D. J. Gooch:Mat. Sci. Eng., 1977, vol. 27, pp. 57–68.

    Article  CAS  Google Scholar 

  70. D.S. Wilkinson, N. Thyagarajan, K.A. Abiko, and D.P. Pope:Metall. Trans. A, 1980, vol. 11 A, pp. 1827–36.

    Google Scholar 

  71. I-Wei Chen and M. H. Yoo: unpublished research, 1983.

  72. A.L. Wazzan:J. App. Phys., 1965, vol. 36, pp. 3596–99.

    Article  CAS  Google Scholar 

  73. K. Sadananda and P. Shahinian:Metall. Trans. A, 1977, vol. 8A, pp. 439–49.

    CAS  Google Scholar 

  74. R. F. Decker and C. T. Sims:The Metallurgy of Nickel-Base Alloys, Wiley, New York, NY, 1972, p. 64.

    Google Scholar 

  75. J.H. Schneibel, C.L. White, and R.A. Padgett: Proc. of Sixth Int. Conf. onThe Strength of Metals and Alloys, Melbourne, Australia, August 15-20, 1982, R.C. Gifkins, ed., Pergamon Press, 1982, vol. 2, pp. 649–54.

    Google Scholar 

  76. A. A. Sagues, H. Schroeder, W. Kesternick, and H. Ullmaier:J. Nucl. Matls., 1978, vol. 78, pp. 289–98.

    Article  Google Scholar 

  77. R. W. Swindeman, K. Farrell, and M. H. Yoo:Res. Mech. Letters, 1981, vol. 1, pp. 67–71.

    CAS  Google Scholar 

  78. R. Page, J.R. Weertman, and M. Roth:Acta Met., 1982, vol. 30, pp. 1357–66.

    Article  Google Scholar 

  79. M. H. Yoo, J. C. Ogle, B. S. Borie, E. H. Lee, and R. W. Hendricks:Acta Met., 1982, vol. 30, pp. 1733–42.

    Article  Google Scholar 

  80. M. H. Yoo, J. C. Ogle, J. H. Schneibel, and R. W. Swindeman: Proc. of the 6th Int. Conf. onThe Strength of Metals and Alloys, Melbourne, Australia, August 16-20, 1982, G.F. Gifkins, ed., Pergamon Press, 1982, vol. 2, pp. 677–82.

    Google Scholar 

  81. J.E. Harris:Trans. TMS-AIME, 1965, vol. 233, pp. 1509–16.

    CAS  Google Scholar 

  82. J.H. Schneibel, R.L. Coble, and R.M. Cannon:Acta Met., 1981, vol. 29, pp. 1285–90.

    Article  Google Scholar 

  83. J.R. Rice and T.J. Chuang:J. Amer. Cer. Soc, 1981, vol. 64, pp. 46–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “The Role of Trace Elements and Interfaces in Creep Failure” held at the annual meeting of The Metallurgical Society of AIME, Dallas, Texas, February 14-18, 1982, under the sponsorship of The Mechanical Metallurgy Committee of TMS-AIME.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, M.H., Trinkaus, H. Crack and cavity nucleation at interfaces during creep. Metall Trans A 14, 547–561 (1983). https://doi.org/10.1007/BF02643772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643772

Keywords

Navigation