Skip to main content
Log in

A Criterion for ductile fracture in sheets under biaxial loading

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A criterion for ductile fracture is developed based on the statistical process of shear joining of voids and on the assumption that the voids responsible for fracture have experienced considerable growth prior to this stage of shearing. From the knowledge of uniaxial flow properties and fracture strain measurement, this model is capable of predicting the strain at fracture for other strain states. The predicted data are in good agreement with experiments. Although this model assumes spherical inclusions, some quantitative estimates for elongated inclusions can also be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

σ 1,σ 2,σ 1 :

Maximum, intermediate and minimum principal stresses;σ 1 andσ 2 act in the plane of the sheet andσ 3 = 0σ m Mean normal (or triaxial) stress = (σ 1 +σ 2 +σ 3)/3

σ p p :

Mean normal stress in a plane perpendicular to elongated inclusions

τ max :

Maximum shear stress = (σ 1 -σ 3)/2

τ :

Effective shear stress

:

Plastic modulus

ε 1,ε 2,ε 3 :

Respectively, the algebraically maximum, intermediate and minimum plastic strains (ε 1 andε 2 are in the plane of the sheet)

ε 1f,ε 2f,ε 3f :

The same strains at fracture

ε :

Effective plastic strain rate

α :

Constant planar stress-ratio (σ 2/σ 1)

ρ,ρ u,ρ o :

Constant planar strain ratio (ε 2/ε 1. The subscriptu refers to uniaxial tension ando refers to any other strain-state between uniaxial and plane strain tension

χ,M 1,M 2 :

Proportionality constants

R :

Normal anisotropy parameter (assuming planar isotropy), defined by the ratio of the width to thickness strains in a tensile test

n, C :

Respectively the exponent and the constant in the parabolic hardening law:σ = Cεn

Λ,m :

Respectively the intervoid spacing and a related constant

f :

Volume fraction of inclusions

S :

Rate of increase in the surface area of voids

A,A :

Midsectional area of voids from spherical inclusions and its growth rate, respectively

R 0 :

Original radius of a spherical inclusion of average size

R :

Radial growth rate of voids from spherical inclusions

l, d, A c :

Respectively, the length, diameter, and midsectional area of a cylindrical inclusion with spherical ends

A l,A d :

Respectively, the growth rates of the cylindrical and spherical midsectional areas of a void from cylindrical inclusion

g :

Geometrical factor related to the directional growth rates of a void from cylindrical inclusion (≃1.5)

P :

Probability of shear linking of voids

K cr :

A material constant related to the critical probability of shear linking

C*,C*1,D*:

Constants related to critical values at fracture

References

  1. E. Orowan:Rep. Progr. Phys., 1948-49, vol. 12, pp. 185–232.

    Article  Google Scholar 

  2. O. Mohr:Abhandlungen ans dem Gebiete der technischen Mechanik, 2nd ed., Berlin, 1914, referenced inPlasticity, by Nadai and Wahl, p. 59, McGraw Hill, New York, 1931.

  3. J. Marin:Mechanical Behavior of Engineering Materials, p. 126, Prentice Hall, London, 1963.

    Google Scholar 

  4. V. Weiss:Proceedings of The International Conference on Mechanical Behavior of Materials, p. 458, Kyoto, Japan, 1971.

  5. M. G. Cockcroft:Ductility, p. 208, ASM, Metals Park, OH, 1968.

    Google Scholar 

  6. I. G. Palmer and G. C. Smith:Proc. 2nd Bolton Landing Conference on Oxide-Dispersion Strengthening, 1966, Lake George, NY.

  7. K. E. Puttick:Phil. Mag., 1959, vol. 4, pp. 964–69.

    Article  CAS  Google Scholar 

  8. H. C. Rogers:Trans. TMS-AIME, 1960, vol. 218, pp. 498–506.

    Google Scholar 

  9. J. Gurland and J. Plateau:Trans. ASM, 1963, vol. 56, p. 442–54.

    CAS  Google Scholar 

  10. F. A. McClintock:J. Appl. Mech., 1968, vol. 35, pp. 363–68.

    Google Scholar 

  11. F. A. McClintock:Ductility, pp. 255–77, ASM, Metals Park, OH, 1968.

    Google Scholar 

  12. S. P. Keeler and W. A. Backofen:Trans. ASM, 1963, vol. 56, pp. 25–48.

    Google Scholar 

  13. A. K. Ghosh: Research Laboratories, General Motors Corporation, Warren, MI, unpublished research.

  14. T. B. Cox and J. R. Low:Met. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  15. J. W. Carson: Ph.D. Thesis, Dept. of Mechanical Engineering, MIT, Cambridge, MA, 1970.

    Google Scholar 

  16. A. S. Argon and J. Im:Met. Trans. A, 1975, vol. 6A, pp. 839–51.

    Article  CAS  Google Scholar 

  17. B. I. Edelson and W. M. Baldwin:Trans. ASM, 1962, vol. 55, pp. 230–50.

    CAS  Google Scholar 

  18. J. R. Rice and D. M. Tracy:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  19. R. Hill: The Mathematical Theory of Plasticity, chap. XII, Oxford University Press, 1967.

  20. A. K. Ghosh and S. S. Hecker:Proceedings of the 2nd North American Metalworking Conference, pp. 366–80, Madison, WI, May, 1974.

  21. M. J. Painter and R. J. Pearce:J. Phys. D, 1974, vol. 7, pp. 992–1002.

    Article  CAS  Google Scholar 

  22. A. K. Ghosh:Met. Trans., 1974, vol. 5, pp. 1607–16.

    Article  CAS  Google Scholar 

  23. S. S. Hecker:Metals Eng. Quart, 1973, vol. 13, pp. 42–48.

    CAS  Google Scholar 

  24. M. Gensamer:Trans. ASM, 1946, vol. 36, pp. 30–60.

    CAS  Google Scholar 

  25. M. Grumbachand G. Sanz:Proceedings of the 7th Biennial Congress of the International Deep Drawing Research Group, pp. 4.1–4.7, Amsterdam, Oct. 1972.

  26. P. Brozzo, B. DeLuca, and R. Rendina:Proceedings of the 7th Biennial Congress of the International Deep Drawing Research Group, pp. 3.1–3.5, Amsterdam, Oct. 1972.

  27. Z. Marciniak.K. Kuczynski and T. Pokora:Int. J. Mech. Sci., 1973, vol. 15, pp. 789–805.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A.K. A Criterion for ductile fracture in sheets under biaxial loading. Metall Trans A 7, 523–533 (1976). https://doi.org/10.1007/BF02643968

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643968

Keywords

Navigation