Skip to main content
Log in

The effect of air and vacuum environments on fatigue crack growth rates in Ti-6Al-4V

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Fatigue crack propagation studies in vacua of 1.33 mN m-2, on Ti-6 A1-4V, at growth rates of 10-7 to 10-4 mm/cycle have shown that a threshold for growth exists at ‡K values of 6.3 to 7.6 MN m-3/2. The value of the threshold level is microstructure dependent, but growth above this value was structure insensitive according to both growth rates and fracture surface observations. Some slow (≈ 10-8 mm/cycle) crack extension was observed below the threshold values but prolonged cycling reduced the growth rate to a vanishingly small level. Fracture surface observations indicated that growth in this region was microstructure sensitive. Comparison with previously performed air work on the same material showed that while structure insensitive growth rates in vacuum were slower than those in air by a factor of 3 to 4, the low ‡K value structure sensitive rates were slower than the air ones by at least three orders of magnitude. A hypothesis is proposed to explain this in terms of a propagation mechanism for the structure sensitive mode of fatigue crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. J. Gough and D. G. Sopwith:J. Inst. Metals, 1932, vol. 49, p. 93.

    Google Scholar 

  2. W. Engelmaier:Trans. TMS-AIME, 1968, vol. 242, p. 1713.

    Google Scholar 

  3. T. H. Shives and J. A. Bennet: /.Mater., 1968, vol. 3, p. 695.

    CAS  Google Scholar 

  4. N. Wadsworth and J. Hutchings:Phil Mag., 1958, vol. 3, p. 1154.

    Article  CAS  Google Scholar 

  5. K. U. Snowden:Acta Met, 1964, vol. 12, p. 295.

    Article  CAS  Google Scholar 

  6. H. H. Smith and P. Shahanian:Amer. Soc. Test. Mater. Spec. Tech. Publ, 462, ASTM, 1970, p. 217.

  7. T. Broom and A. J. Nicholson:J. Inst. Metals, 1960, vol. 89, p. 183.

    Google Scholar 

  8. M. R. Achter:Amer. Soc. Test. Mater. Spec. Tech. Publ, 415, ASTM, 1967, p. 181.

  9. F. J. Bradshaw and C. Wheeler:Appl Mater. Res., 1966, p. 112.

  10. F. J. Bradshaw and C. Wheeler:Int. J. Fract. Mech., 1969, vol. 5, p. 255.

    Article  Google Scholar 

  11. D. A. Meyn:Trans. ASM, 1968, vol. 61, p. 52.

    Google Scholar 

  12. D. A. Meyn:Met. Trans., 1971, vol. 2, p. 853.

    Article  CAS  Google Scholar 

  13. J. A. Feeney, J. C. McMillan, and R. P. Wei:Met. Trans., 1970, vol. l,p. 853.

    Google Scholar 

  14. R. P. Wei and J. D. Landes:Int. J. Fract. Mech., 1969, vol. 5, p. 69.

    Article  Google Scholar 

  15. A. Hartman and J. Schijve:Eng. Fract. Mech., 1970, vol. 1, p. 615.

    Article  CAS  Google Scholar 

  16. R. N. Wright and A. S. Argon:Met. Trans., 1970, vol. 1, p. 3065.

    Article  CAS  Google Scholar 

  17. R. M. Pelloux:Trans. ASM, 1969, vol. 62, p. 281.

    CAS  Google Scholar 

  18. R. J. Selines and R. M. Pelloux:Met. Trans., 1972, vol. 3,p. 2525.

    Article  CAS  Google Scholar 

  19. D. M. James: RAE Technical Memorandum CPM 66, October 1966.

  20. R. L. Stegman and P. Shahanian:Met. Sci. J., 1972, vol. 6, p. 123.

    Article  CAS  Google Scholar 

  21. W. A. Spitzig and R. P. Wei:Eng. Fract. Mech, 1970, vol. 1, p. 719.

    Article  CAS  Google Scholar 

  22. R. P. Wei and D. L. Ritter:J. Mater, 1972, vol. 7, p. 240.

    CAS  Google Scholar 

  23. R. J. Bucci, P. C. Paris, R. W. Hertzberg, R. A. Schmidt, and A. F. Anderson:Amer. Soc. Test. Mater. Spec. Tech. Publ., 513, ASTM, 1971, p. 125.

  24. H. H. Smith, P. Shahanian, and M. R. Achter:Trans. TMS-AIME, 1969, vol. 245, p. 947.

    Google Scholar 

  25. G. F. Pittinato:Met. Trans., 1972, vol. 3, p. 235.

    Article  CAS  Google Scholar 

  26. D. A. Meyn:Met. Trans., 1972, vol. 3, p. 2302.

    Article  Google Scholar 

  27. P. E. Irving and C. J. Beavers:Mater. Sci. Eng., In Press.

  28. M. R. Achter:Scr. Met., 1968, vol. 2, p. 525.

    Article  Google Scholar 

  29. W. F. Brown and J. E. Srawley:Amer. Soc. Test. Mater. Spec. Tech. Publ, 410, ASTM, 1966.

  30. R. J. Cooke and J. L. Robinson: Birmingham University Research Report, 1971.

  31. M. Klensnil and P. Lukas:Eng. Fract. Mech., 1972, vol. 4, p. 77.

    Article  Google Scholar 

  32. R. J. Cooke and C. J. Beevers:Eng. Fract. Mech. In Press.

  33. D. L. Ritter and R. P. Wei:Met. Trans., 1971, vol. 2, p. 3229.

    Article  CAS  Google Scholar 

  34. P. J. E. Forsyth:Ada Met, 1963, vol. 11,p. 703.

    Article  Google Scholar 

  35. P. E. Irving, J. L. Robinson, and C. J. Beevers:Int. J. Fract. Mech., 1973, vol. 9, p. 105.

    Article  CAS  Google Scholar 

  36. J. R. Rice:Amer. Soc. Test. Mater. Spec. Tech. Publ., 415, ASTM, 1967.

  37. M. Klesnil and P. Lukas:Mater. Sei. Eng., 1972, vol. 9, p. 231.

    Article  Google Scholar 

  38. A. J. Hatch:Trans. TMS-AIME, 1965, vol. 233, p. 44.

    CAS  Google Scholar 

  39. G. Birbeck, A. E. Inckle, and G. W. J. Waldron:J. Mater. Sci., 1971, vol. 6, p. 319.

    Article  Google Scholar 

  40. P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Clark, and T. R. Mager:Amer. Soc. Test. Mater. Spec. Tech. Publ., 513, ASTM, 1971, p. 141.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research Fellow, Department of Physical Metallurgy, University of Birmingham, England

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irving, P.E., Beevers, C.J. The effect of air and vacuum environments on fatigue crack growth rates in Ti-6Al-4V. Metall Trans 5, 391–398 (1974). https://doi.org/10.1007/BF02644106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644106

Keywords

Navigation