Skip to main content
Log in

The intergranular embrittlement of nickel by hydrogen: The effect of grain boundary segregation

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The mechanical behavior of polycrystalline nickel specimens that were deformed in tension and cathodically charged with hydrogen simultaneously was investigated with particular emphasis on the fracture of such electrodes. This procedure leads to definite, if, however, weak serrated yielding and also markedly reduces the elongation at fracture compared to polycrystals unexposed to hydrogen. Moreover, in contrast to hydrogenated nickel monocrystals which neck down to give a chisel-edge fracture typical of ductile metals, hydrogenated polycrystal fractures are brittle and intergranular. The embrittlement of nickel by hydrogen is shown by means of Auger electron spectroscopy to be associated with the segregation of hydrogen recombination poisons to the grain boundaries. In essence, it is suggested that the entry of hydrogen into the nickel specimens occurs preferentially in the proximity of grain boundary intersections with the free surface, due to the presence therein of Sb and Sn which act as hydrogen recombination poisons and stimulate the absorption of hydrogen by the metal. The presence of such impurities in the grain boundaries suggests that a pressure mechanism is not involved in the intergranular cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Blanchard and A. R. Troiano:Mem. Sci. Rev. Metall., 1960, vol. 57, pp. 409–22.

    Article  CAS  Google Scholar 

  2. M. B. Whiteman and A. R. Troiano:Corrosion, 1965, vol. 21, pp. 53–56.

    Article  CAS  Google Scholar 

  3. J. H. Shiveley, R. F. Hehemann, and A. R. Troiano:Corrosion, 1967, vol. 23, pp. 215–17;Corrosion, 1966, vol. 22, pp. 253-56.

    Article  Google Scholar 

  4. R. M. Latanision and R. W. Staehle:Scripta Met, 1968, vol. 2, pp. 667–72.

    Article  CAS  Google Scholar 

  5. A. H. Windle and G. C. Smith:Met. Sci. J., 1968, vol. 2, pp. 187–91.

    Article  CAS  Google Scholar 

  6. T. Boniszewski and G. C. Smith:ActaMet., 1964, vol. 11, pp. 165–78.

    Google Scholar 

  7. B. Wilcox and G. C. Smith:ActaMet, 1964, vol. 12, pp. 371–76.

    CAS  Google Scholar 

  8. A. H. Windle and G. C. Smith:Met. Sel J., 1970, vol. 4, pp. 136–44.

    CAS  Google Scholar 

  9. P. Combette and J. Grilhe:Second International Conference on Strength of Metals and Alloys, vol. 1, pp. 346-50, ASM, 1970.

  10. J. S. Blakemore:Met. Trans., 1970, vol. 1, pp. 145–49.

    Article  CAS  Google Scholar 

  11. B. Wilcox and G. C. Smith:Acta Met., 1965, vol. 13, pp. 331–43.

    Article  CAS  Google Scholar 

  12. R. M. Latanision: Ph.D. Thesis, Ohio State University, 1968.

  13. R. M. Latanision, A. J. Sedriks, and A. R. C. Westwood:Structure and Proper- ties of Metal Surfaces, Honda Memorial Series of Materials Science, pp. 499- 538, Maruzen Co., Ltd., Tokyo, 1973. (RIAS TR71-06c, February, 1971).

    Google Scholar 

  14. J. T. Fourie and N. C. G. Dent:Acta Met., 1972, vol. 20, pp. 1291–96.

    Article  CAS  Google Scholar 

  15. J. P. Fidelle, Discussion to paper by R. M. Latanision:Corrosion Fatigue, pp. 185–200, N.A.C.E., Houston, 1972; see also, J. P. Fidelle, C. Roux, and M. Rapin:Mem. Sci. Rev. Met, 1969, vol. 66, pp. 833-44.

    Google Scholar 

  16. K. Kolb and E. Macherauch:Phil. Mag., 1962, vol. 7, pp. 415–26.

    Article  CAS  Google Scholar 

  17. G. B. Greenough:J. Iron Steel Inst, 1951, vol. 169, pp. 235–41 ;Proc. Roy. Soc., 1949, vol. A197, pp. 556-67.

    Google Scholar 

  18. G. Vellaikal and J. Washbum:J. Appl. Phys., 1969, vol. 40, pp. 2280–86.

    Article  CAS  Google Scholar 

  19. Huntington Alloys Handbook, Fifth ed., p. 10, 1970.

  20. R. M. Latanision and R. W. Staehle:ActaMet, 1969, vol. 17, pp. 307–19.

    CAS  Google Scholar 

  21. J. M. West:Electrodeposition and Corrosion Process, p. 126, D. Van Nostrand, London,1965.

    Google Scholar 

  22. M. Smialowski:Hydrogen in Steel, p. 109, Pergamon Press, London, 1962.

    Google Scholar 

  23. K. B. Hinerman: Huntington Alloy Products Division, Wilmington, Delaware Office, private communication, 1972.

  24. H. L. Marcus and P. W. Palmberg:Trans. TMS-AIME, 1969, vol. 245, pp. 1664- 66.

    CAS  Google Scholar 

  25. D. F. Stein, A. Joshi, and R. P. Laforce:Trans. ASM, 1969, vol. 62, pp. 776- 83.

    CAS  Google Scholar 

  26. D. F. Stein, A. Joshi, and D. V. Ramasubramanian:Proc. 2nd Int. Cong. Strength of Metals and Alloys, pp. 317-21, ASM Metals Park, Ohio, 1970.

  27. P. W. Palmberg: Physical Electronics Industries, Edina, Minnesota, private com- munication, 1972.

  28. M. Pourbaix:An Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, 1966.

    Google Scholar 

  29. M. Smialowski, Ref. 22, p. 369.

  30. M. Smialowski, Ref. 22, p. 112.

  31. I. M. Bernstein:Mat. Sci. Eng, 1970, vol. 6, pp. 1–19.

    Article  CAS  Google Scholar 

  32. T. Boniszewski and G. C. Smith:J. Phys. Chem. Solids, 1961, vol. 21, pp. 115- 18.

    Article  CAS  Google Scholar 

  33. M. Smialowski:Fundamental Aspects of Stress Corrosion Cracking, pp. 462- 64, N.A.C.E., Houston, 1969.

    Google Scholar 

  34. R. A. Oriani and P. H. Josephic:Scripta Met., 1972, vol. 6, pp. 681–88.

    Article  CAS  Google Scholar 

  35. A. R. C. Westwood, C. M. Preece, and M. H. Kamdar:Fracture, vol. 3, pp. 589- 644, Academic Press, New York, 1971.

    Google Scholar 

  36. M. R. Louthan, Jr., G. R. Caskey, Jr., J. A. Donovan, and D. E. Rawl, Jr.:Mat. Sei. Eng, 1972, vol. 10, pp. 357–68.

    Article  CAS  Google Scholar 

  37. R. J. Walter, R. P. Jewett, and W. T. Chandler:Mat. Sei. Eng., 1969-70, vol. 5, pp. 98–110.

    Google Scholar 

  38. D. P. Williams and H. G. Nelson:Met. Trans., 1970, vol. 1, pp. 63–68.

    Article  CAS  Google Scholar 

  39. J. J. Gilman:Phil. Mag, 1972, vol. 26, pp. 801–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latanision, R.M., Opperhauser, H. The intergranular embrittlement of nickel by hydrogen: The effect of grain boundary segregation. Metall Trans 5, 483–492 (1974). https://doi.org/10.1007/BF02644118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644118

Keywords

Navigation