Skip to main content
Log in

Deformation kinetics of α-titanium at low temperatures using stress relaxation

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Stress relaxation tests were carried out on titanium wire (0.2 at. pct Oeq) as a function of grain size (5 to 42 μm) at 77 to 623 K to study the rate-controlling mechanism. Values for the activation volume were derived from the slope of the stress relaxation curves. The Gibbs free energy of activation ΔG at σ* = 0 and OK was ∼1.4 eV (∼0.2 μo2b2), the maximum forcef*i of the dislocation-obstacle interaction ∼80 x 10-6 dyne (~0.2 μ0b2) and the activation distancex* at which the force first increases rapidly ∼2b. These values are in good agreement with those obtained in the more conventional strain rate cycling tests and support the earlier conclusion that the rate controlling mechanism during the low temperature deformation of titanium is thermally activated overcoming of interstitial solute obstacles on the first order prism planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Conrad and R. Jones:The Science, Technology and Application of Titanium, p. 489, Pergamon Press, New York, 1970.

    Google Scholar 

  2. H. Conrad, M. Doner, and B. deMeester:Titanium Science and Technology, vol. 2, R.I. Jaffee and H.M. Burte, eds., p. 969, Plenum Publ. Corp., New York, 1973.

    Google Scholar 

  3. R. Zeyfang, R. Martin, and H. Conrad:Mater. Sci. Eng., 1971, vol. 8, p. 134.

    Article  CAS  Google Scholar 

  4. G. Sargent and H. Conrad:Scripta Met., 1969, vol. 3, p. 43.

    Article  CAS  Google Scholar 

  5. B. deMeester, C. Yin, M. Doner, and H. Conrad:John E. Dom Memorial Sym- posium Rate Processes in Plastic Deformation, Cleveland, Ohio, Oct. 16 and 17, 1972, in press.

  6. J. Friedel:Dislocations, p. 224, Addisoh-Wesley, New York, 1964.

    Google Scholar 

  7. H. Conrad:Can. J. Phys., 1967, vol. 45, p. 581.

    CAS  Google Scholar 

  8. G. Schoeck:Phys. Status Solidi, 1965, vol. 8, p. 499.

    Article  CAS  Google Scholar 

  9. W. R. Tyson and H. Conrad: Department of Metallurgical Engineering and Materials Science, University of Kentucky, Lexington, Kentucky, unpublished research, 1972.

  10. F. Guiu and P. L. Pratt:Phys. Status Solidi., 1964, vol. 6, p. 111.

    Article  Google Scholar 

  11. G. A. Sargent:Acta Met., 1965, vol. 13, p. 663.

    Article  CAS  Google Scholar 

  12. P. Feltham:Phil. Mag., 1961, vol. 6, p. 259.

    Article  CAS  Google Scholar 

  13. S. P. Agrawal, G. A. Sargent, and H. Conrad:J. Less-Common Metals, in press.

  14. K. Okazaki and H. Conrad:Met. Trans., 1972, vol. 3, p. 2411.

    Article  CAS  Google Scholar 

  15. K. Okazaki and H. Conrad:Trans. Jap. Inst. Met, 1972, vol. 13, p. 198.

    CAS  Google Scholar 

  16. A. Seeger:Z. Naturforsch, 1954, vol. 9a, pp. 758, 819, 856.

    CAS  Google Scholar 

  17. A. Seeger:Defects in Crystalline Solids, p. 328, The Phys. Soc, London, 1955.

    Google Scholar 

  18. E. S. Fisher and C. J. Renken:Phys. Rev., 1964, no. 2A, vol. 135, p. A482.

    Article  Google Scholar 

  19. K. Okazaki and H. Conrad:Trans. Jap. Inst. Met., 1972, vol. 13, p. 205.

    CAS  Google Scholar 

  20. K. Okazaki and H. Conrad: Department of Metallurgical Engineering and Materials Science, University of Kentucky, Lexington, Kentucky, unpublished research, 1972.

  21. U. F. Kocks:Proc. Int. Conf. on the Strength of Metals and Alloys, suppl. to Trans. Jap. Inst. Met., 1968, vol. 9, p. 1.

  22. T. Tanaka and H. Conrad:Acta Met., 1972, vol. 20, p. 1019.

    Article  CAS  Google Scholar 

  23. P. E. Armstrong and H. L. Brown:Trans. TMS-AIME, 1964, vol. 230, p. 962.

    CAS  Google Scholar 

  24. R. L. Jones and H. Conrad:Trans. TMS-AIME, 1969, vol. 245, p. 779.

    CAS  Google Scholar 

  25. H. Conrad, K. Okazaki, V. Gadgil, and M. Jon:Electron Microscopy and Strength of Materials, p. 438, Univ. Cal. Press, Berkeley, 1972.

    Google Scholar 

  26. W. R. Tyson and G. B. Craig:Can. Met. Quart-, 1969, vol. 7, p. 119.

    Google Scholar 

  27. B. deMeester, M. Doner, and H. Conrad: Department of Metallurgical Engi- neering and Materials Science, University of Kentucky, Lexington, Kentucky, unpublished research, 1972.

  28. K. Okazaki and H. Conrad:Acta Met, 1973, vol. 21, p. 1117.

    Article  CAS  Google Scholar 

  29. H. Conrad:Acta Met., 1966, vol. 14, p. 1631.

    Article  CAS  Google Scholar 

  30. G. A. Sargent and H. Conrad:Scripta Met., 1972, vol. 6, p. 1099.

    Article  CAS  Google Scholar 

  31. P. G. Partridge: Metallurgical Reviews, 1967, Rev. 118, p. 169.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, S.P., Sargent, G.A. & Conrad, H. Deformation kinetics of α-titanium at low temperatures using stress relaxation. Metall Trans 4, 2613–2620 (1973). https://doi.org/10.1007/BF02644265

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644265

Keywords

Navigation