Skip to main content
Log in

Hydrogen-induced cracking in 4340-type steel: Effects of composition, yield strength, and H2 pressure

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Measurements of the threshold stress intensity for hydrogen-induced crack extension,Kth at room temperature were made on bolt-loaded WOL specimens of a commercial 4340 steel and of laboratory heats in which the bulk concentrations of manganese, silicon, phosphorus, and sulfur were varied. The hydrogen pressure was varied from 200 to 1600 torr (~0.03 to 0.22 MPa), and the yield strengths were varied from ~170 to 270 ksi (~1200 to 1900 MPa). Measurements ofKIc in air were also made as a function of composition and yield strength. Significant differences betweenKIc in air andKth in H2 were found only in steels containing added Mn or Si; these elements are believed to promote segregation of phosphorus and sulfur to austenite grain boundaries. TheKth values were uniquely related to the percentage of intergranular fracture and also to a parameter containing the calculated maximum hydrogen concentration and the bulk concentrations of manganese, silicon, phosphorus, and sulfur. In a high purity steel free of manganese and silicon theKth was lower thanKIc only at yield strengths greater than 200 ksi (1400 MPa). The results are consistent with an additive reduction in cohesive strength by hydrogen and metalloid impurities. It is shown that theKth depends on hydrogen fugacity, yield strength, and grain boundary purity(i.e., cohesive strength).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  2. U. Q. Cabrai, A. Hache, and A. Constant:C.R. Acad. Sci., Paris, 1965, vol. 260, p. 6887.

    Google Scholar 

  3. D. P. Williams and H. G. Nelson:Metall. Trans., 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  4. R. A. Oriani:Ber-Bunsen-Geselsch. Phys. Chem., 1972, vol. 76, p. 848.

    CAS  Google Scholar 

  5. K. Yoshino and C.J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, p. 363.

    CAS  Google Scholar 

  6. R. A. Oriani and P. H. Josephic:Acta Metall., 1974, vol. 22, p. 1065.

    Article  CAS  Google Scholar 

  7. W.W. Gerberich and Y.T. Chen:Metall. Trans. A, 1975, vol. 6A, p. 271.

    CAS  Google Scholar 

  8. J. F. Lesser and W. W. Gerberich:Metall. Trans. A, 1976, vol. 7A, p. 953.

    Google Scholar 

  9. R. Viswanathan and S. J. Hudak, Jr.:Metall. Trans. A, 1977, vol. 8A, p. 1633.

    CAS  Google Scholar 

  10. G.W. Simmons, P.S. Pao, and R. P. Wei:Metall. Trans. A, 1978, vol. 9A, p. 1147.

    CAS  Google Scholar 

  11. S. K. Banerji, C. J. M Mahon, Jr., and H. C. Feng:Metall. Trans. A, 1978, vol. 9A, p. 237.

    CAS  Google Scholar 

  12. C. L. Briant, H. C. Feng, and C. J. McMahon, Jr.:Metall. Trans. A, 1978, vol. 9A, p. 625.

    CAS  Google Scholar 

  13. Y. Takeda and C. J. McMahon, Jr.:Metall. Trans. A, 1981, vol. 12A, p. 1255.

    Google Scholar 

  14. Jun Kameda, N. Bandyopadhyay, and C. J. McMahon, Jr.: Proc. Int. Symp. on “Hydrogen in Metals”, Minakami, Japan, 1979,Trans. JIM, 1980, vol. 21, p. 437.

    Google Scholar 

  15. H. Mabuchi and C.J. McMahon, Jr.:ibid.,, p. 441.

    Google Scholar 

  16. Jun Kameda and C.J. McMahon, Jr.:Metall. Trans. A, 1981, vol. 12A, p. 31.

    Google Scholar 

  17. S.R. Novak and S.T. Rolfe:J. of Materials, 1969, vol. 4, p. 701.

    Google Scholar 

  18. K. Farrell and A. G. Quarrell:J. Iron Steel Inst., 1964, vol. 202, p. 1002.

    CAS  Google Scholar 

  19. N. Bandyopadhyay and C.J. McMahon, Jr.: Metall. Trans. A, in press.

  20. W.G. Clark, Jr.: Westinghouse Research Laboratories, Scientific Paper 75-1E7-MSLRA-P1.

  21. CM. Li, R.A. Oriani, and L.W. Darken:Z. Phys. Chem., 1966, vol. 49, p. 271.

    CAS  Google Scholar 

  22. H. Wagenblast and H.A. Wriedt:Metall. Trans., 1971, vol. 2, p. 1393.

    CAS  Google Scholar 

  23. J.P. Hirth:Metall. Trans. A, 1980, vol. 11A, p. 861.

    CAS  Google Scholar 

  24. N. R. Quick and H. H. Johnson:Acta Metall., 1978, vol. 26, p. 906.

    Google Scholar 

  25. J.R. Rice and M.A. Johnson:Inelastic Behavior of Solids, M.F. Kanninen, ed., McGraw-Hill, New York, NY, 1970, p. 164.

    Google Scholar 

  26. Jun Kameda and C.J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, p. 903.

    Google Scholar 

  27. B.C. Edwards: Intnl. Sympos. on Defects and Fracture, Krakov, Poland, October 1980.

    Google Scholar 

  28. J. Shin, Jun Kameda, and C. J. McMahon, Jr.: Symposium on Micro and Macromechanisms of Crack Growth, Fall Meeting TMS-AIME, Louisville, KY, October 1981, in press.

    Google Scholar 

  29. P. Jolly and C. Goux:Mem. Sci. Rev. Met., 1969, vol. 66, p. 605.

    CAS  Google Scholar 

  30. S.M. Bruemmer, R. H. Jones, M.T. Thomas, and D.R. Baer: Fall Meeting TMS-AIME, Louisville, KY, October 1981.

  31. M. L. Jokl: University of Pennsylvania, unpublished research, 1981.

  32. Jun Kameda and M. L. Jokl:Scripta Metall., 1982, vol. 16, p. 325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Materials Science and Engineering, University of Pennsylvania

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, N., Kameda, J. & Mcmahon, C.J. Hydrogen-induced cracking in 4340-type steel: Effects of composition, yield strength, and H2 pressure. Metall Trans A 14, 881–888 (1983). https://doi.org/10.1007/BF02644292

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644292

Keywords

Navigation