Skip to main content
Log in

The effect of loading mode on the stress-corrosion cracking of aluminum alloy 5083

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Recent studies have revealed that the mechanism of stress-corrosion cracking (SCC) of high-strength Al-Zn-Mg alloys involves both dissolution and hydrogen embrittlement (HE); moreover, under tensile-loading conditions, evidence exists that the hydrogen mechanism is dominant. In the present study, the role of HE in the SCC of Al-Mg alloys was investigated using commercial Al-4.4 wt pct Mg alloy, 5083. The susceptibility of this alloy to SCC in a saline environment was evaluated in Mode I (tension) and Mode III (torsion), using precracked fracture toughness specimens. The greater susceptibility found in Mode I indicates that HE is involved in SCC. As further evidence that HE is operating, susceptibility increased when As, a hydrogen recombination inhibitor, was added to the test solution under Mode I conditions. Issues related to the overall validity of the loading mode experiment are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.O. Sprowls and R. H. Brown: inFundamental Aspects of Stress Corrosion Cracking, Proceedings of a Conference, R. W. Staehle, A. J. Forty, and D. Van Rooyen, eds., National Association of Corrosion Engineers, Houston, TX, 1969, pp. 466–512.

    Google Scholar 

  2. M. O. Speidel and M. V. Hyatt: inAdvances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Press, New York, NY, 1972, p. 121.

    Google Scholar 

  3. E.N. Pugh, J.A.S. Green, and A.J. Sedriks: inInterfaces, Proceedings of a Conference, Australian Inst. of Metals, Butterworth and Co., Melbourne, Australia, 1970, pp. 237–56.

    Google Scholar 

  4. J.C. Scully:Met. Sci., 1978, vol. 12, pp. 290–300.

    Article  CAS  Google Scholar 

  5. A.J. Sedriks, J.A.S. Green, and D.L. Novak:Corrosion, 1971, vol. 27, pp. 198–201.

    CAS  Google Scholar 

  6. W. Gruhl:Z. Metall., 1963, vol. 54, no. 86, pp. 86–91.

    Google Scholar 

  7. W. Gruhl: Preprints ofProceedings of NATO Conference on the Theory of SCC in Alloys, J. C. Scully, ed., Brussels, 1971, pp. 1-16.

  8. L. Montgrain and P. R. Swann:Hydrogen in Metals, I. M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 575–84.

    Google Scholar 

  9. G. M. Seamans:J. Mater. Sci., 1978, vol. 13, pp. 27–36.

    Article  Google Scholar 

  10. G.M. Seamans, R. Alani, and P. R. Swann:Corros. Sci., 1976, vol. 16, pp. 443–59.

    Article  Google Scholar 

  11. G.M. Seamans and A.S. Rehal:J. Mater. Sci., 1979, vol. 14, pp. 2459–70.

    Article  Google Scholar 

  12. L. Christodoulou and H.M. Flower:Acta Met., 1980, vol. 28, pp. 481–87.

    Article  CAS  Google Scholar 

  13. R. J. Gest and A. R. Troiano:Corrosion NACE, 1974, vol. 30,no. 8, pp. 274–79.

    CAS  Google Scholar 

  14. J. Albrecht, B. J. McTiernan, I. M. Bernstein, and A. W. Thompson:Scripta Met., 1977, vol. 11, pp. 893–97.

    Article  CAS  Google Scholar 

  15. R. Alani and P.R. Swann:Br. Corros. J., 1977, vol. 12, no. 2, pp. 80–85.

    CAS  Google Scholar 

  16. M. O. Speidel: inHydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 23–27.

    Google Scholar 

  17. H.W. Hayden and S. Floreen:Corrosion NACE, 1971, vol. 27, no. 10, pp. 429–33.

    CAS  Google Scholar 

  18. C. St. John and W.W. Gerberich:Metall. Trans. A, 1973, vol. 4, pp. 589–94.

    Google Scholar 

  19. J.A.S. Green and H.W. Hayden: inHydrogen in Metals, I.M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 235–44.

    Google Scholar 

  20. J.A.S. Green, H.W. Hayden, and W.G. Montague: inEffect of Hydrogen on Behavior of Materials, A. W. Thompson and I. M Bernstein, eds., TMS-AIME, Warrendale, PA, 1976, pp. 200–17.

    Google Scholar 

  21. R. E. Swanson, A. W. Thompson, I. M. Bernstein, and J. L. Maloney, III: inHydrogen Effects in Metals, TMS-AIME, Warrendale, PA, 1980, pp. 459–66.

    Google Scholar 

  22. R. E. Swanson, I. M. Bernstein, and A. W. Thompson:Scripta Met., 1982, vol. 16, pp. 321–24.

    Article  CAS  Google Scholar 

  23. J. C. M. Li, R. A. Oriani, and L. S. Darken:Z. Phys. Chem. Neue Folge, 1966, vol. 49, pp. 271–90.

    CAS  Google Scholar 

  24. J. A. S. Green, H. D. Mengelberg, and H. T. Yolken:J. Electrochem. Soc., 1970, vol. 117, pp. 433–37.

    Article  CAS  Google Scholar 

  25. E. N. Pugh: Prepared discussion, inAtomistics of Fracture (Proceedings of NATO Advanced Research Institute Conference, May 22-31, 1981, Calcatoggio, Corsica), p. 997, R. M. Latanision and J. R. Pickens, eds., Plenum Press, New York, NY, in press.

    Google Scholar 

  26. D. O. Sprowls, M. B. Shumaker, J. W. Coursen, and J. D. Walsh: Final Report, part I (period July 1, 1968-August 31, 1972), Contract No. NAS 8-21487, for George C. Marshall Space Flight Center, May 31, 1973.

  27. D. O. Sprowls: Alcoa Technical Center, Pittsburgh, PA, private communication to J. R. Pickens, Martin Marietta Laboratories, 1980.

  28. 1980 Annual Book of ASTM Standards, ASTM E399-789, American Society for Testing and Materials, 1980, part 10, pp. 580-601.

  29. W. F. Brown and J. E. Srawley:Plane Strain Crack Toughness Testing of High-Strength Metallic Materials, ASTM STP 410, 129 pp., American Society for Testing and Materials, 1966.

  30. H. Tada, P. Paris, and G. Irwin:The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown, PA, 1973.

    Google Scholar 

  31. M.P. Rozanov and V. I. Smirnov:Ind. Lab., 1979, vol. 45, no. 7, p. 830.

    Google Scholar 

  32. T. Ohnishi, K. Higashi, N. Inoue, and Y. Nakatani:J. Japn. Inst. Light Met., 1980, vol. 30, no. 5, pp. 263–70.

    Google Scholar 

  33. T. Ohnishi and K. Higashi:Aluminium, 1981, vol. 8, pp. 558–59.

    Google Scholar 

  34. K. Higashi, T. Ohnishi, Y. Nakatani, and K. Okabayashi:J. Japn. Inst. Light Met., June 1981, vol. 31, no. 6, pp. 386–92.

    Google Scholar 

  35. P. R. Swann: Discussion inHydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, p. 274.

    Google Scholar 

  36. J. A. S. Green, R. K. Viswanadham, T. S. Sun, and W. G. Montague: inCorrosion/77, Proceedings of the International Corrosion Forum, Paper 17, NACE, San Francisco, CA, 1977, pp. 17/1–17/12.

    Google Scholar 

  37. R. K. Viswanadham, T. S. Sun, and J. A. S. Green:Corrosion NACE, 1980, vol. 36, no. 6, pp. 275–78.

    CAS  Google Scholar 

  38. T. S. Sun, J. M. Chen, R. K. Viswanadham, and J. A. S. Green:Appl. Phys. Lett., 1977, vol. 31, pp. 580–82.

    Article  CAS  Google Scholar 

  39. R. K. Viswanadham, T. S. Sun, and J. A. S. Green:Metall. Trans. A, 1980, vol. 11A, pp. 85–89.

    CAS  Google Scholar 

  40. M. V. Hyatt and M. O. Speidel: Chapter 4 ofStress-Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys, B.F. Brown, ed., Nav. Res. Lab, 1972, pp. 147-244.

  41. D. Broek: inElementary Engineering Fracture Mechanics, Noordhoff International Publishers, Leyden, Netherlands, 1974, p. 99.

    Google Scholar 

  42. P. F. Thomson and N. M. Burman:Mater. Sci. Eng., 1980, vol. 45, pp. 95–107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickens, J.R., Gordon, J.R. & Green, J.A.S. The effect of loading mode on the stress-corrosion cracking of aluminum alloy 5083. Metall Trans A 14, 925–930 (1983). https://doi.org/10.1007/BF02644298

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644298

Keywords

Navigation