Skip to main content
Log in

The Effect of Rapid Solidification Velocity on the Microstructure of Ag-Cu Alloys

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Electron beam solidification passes have been performed on a series of Ag-Cu alloys between 1 wt pct Cu and the eutectic composition (28.1 wt pct Cu) at speeds between 1.5 and 400 cm per second. At low growth rates conventional dendritic or eutectic structures are obtained. The maximum growth rate of eutectic structure is 2.5 cm per second. At high growth rates microsegregation-free single phase structures are obtained for all compositions. The velocity required to produce this structure increases with composition for dilute alloys and agrees with the theory of absolute stability of a planar liquid-solid interface with equilibrium partitioning. For alloys between 15 and 28 wt pct Cu, the velocity required to produce the microsegregation-free extended solid solution decreases with composition and is related to nonequilibrium trapping of solute at the liquid solid interface. At intermediate growth rates for alloys with 9 wt pct Cu or greater, a structure consisting of alternating bands of cellular and cell-free material is obtained. The bands form approximately parallel to the local interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Duwez, R. H. Willens, and W. Klement, Jr.:J. Appl. Phys., 1960, vol. 31, p. 1136.

    Article  CAS  Google Scholar 

  2. P.G. Boswell and G.A. Chadwick:J. Mat. Sci., 1977, vol. 12, p. 1879.

    Article  CAS  Google Scholar 

  3. R. Stoering and H. Conrad:Acta Metall., 1969, vol. 17, p. 933.

    Article  CAS  Google Scholar 

  4. H. Jones:Aluminium, 1978, vol. 54, p. 274.

    CAS  Google Scholar 

  5. H. Jones:Matl. Sci. & Eng., 1969/70, vol. 5, p. 1.

    Article  CAS  Google Scholar 

  6. P. Furrer and H. Warlimont:Z. Metallkunde, 1973, vol. 64, p. 236.

    CAS  Google Scholar 

  7. S. Kou, S.C. Hsu, and R. Mehrabian:Metall. Trans. B, 1981, vol. 12B, p. 33.

    Article  CAS  Google Scholar 

  8. R. Kadalbal, J. Montoya-Cruz, and T. Z. Kattamis:Rapid Solidification Processing Principles and Technologies, II, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor’s, Baton Rouge, LA, 1980, p. 195.

    Google Scholar 

  9. B. G. Lewis, D. A. Gilbert, and P. R. Strutt:Rapid Solidification Processing Principles and Technologies, II, R.Mehrabian, B. H.Kear, and M.Cohen, eds., Claitor’s, Baton Rouge, LA, 1980, p. 221.

    Google Scholar 

  10. W. A. Elliott, F. P. Gagliano, and G. Krauss:Metall. Trans., 1973, vol. 4, p. 2031.

    Article  CAS  Google Scholar 

  11. M. Copley, M. Bass, E.W. Van Stryland, D.G. Beck, and O. Esquivel:Proc. III Int. Conf. Rapidly Quenched Metals, B. Cantor, ed., The Metals Society, London, 1978, vol. 1, p. 147.

    Google Scholar 

  12. D.G. Beck, S. M. Copley, and M. Bass:Metall. Trans. A, 1981, vol. 12A, p. 16.

    Google Scholar 

  13. D.G. Beck, S.M. Copley, and M. Bass:Metall. Trans. A, 1982, vol. 13A, p. 1879.

    Article  Google Scholar 

  14. W.W. Mullins and R. F. Sekerka:J. Appl. Phys., 1964, vol. 35, p. 444.

    Article  Google Scholar 

  15. S.R. Coriell and R. F. Sekerka:Rapid Solidification Processing Principles and Technologies, II, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitor’s, Baton Rouge, LA, 1980, pp. 35–49.

    Google Scholar 

  16. J. C. Baker and J. W. Cahn:Acta Metall., 1969, vol. 17, p. 575.

    Article  CAS  Google Scholar 

  17. J. C. Baker and J. W. Cahn:Solidification, ASM, Metals Park, OH, 1971, p. 23.

    Google Scholar 

  18. P. Baeri, G. Foti, D.M. Poate, S.V. Campisano, and A.G. Cullis:Appl. Phys. Lett., 1981, vol. 38, p. 800.

    Article  CAS  Google Scholar 

  19. W. White, B.R. Appleton, B. Stritzker, D.M. Zehner, and S.R. Wilson:Laser and Electron Beam Solid Interactions and Materials Processing, North Holland, NY, 1981, p. 59.

  20. J. C. Baker: Ph.D. Thesis, Chapter V, MIT, 1970. Also reported by J. W. Cahn, S. R. Coriell, and W. J. Boettinger:Laser and Electron Beam Processing of Materials, Academic Press, NY, 1980, p. 89.

  21. M. J. Aziz:J. Appl. Phys., 1982, vol. 53, p. 1158.

    Article  CAS  Google Scholar 

  22. K. A. Jackson, G. H. Gilmer, and H. J. Leamy:Laser and Electron Beam Processing of Materials, Academic Press, NY, 1980, p. 104.

    Book  Google Scholar 

  23. R. F. Wood:Phys. Rev., 1982, vol. B25, p. 2786.

    Article  Google Scholar 

  24. S.R. Coriell and R. F. Sekerka:J. Crystal Growth, 1983, vol. 61, p. 499.

    Article  CAS  Google Scholar 

  25. see, for example, P. Löhberg and H. Müller:Z. Metallkunde, 1969, vol. 60, p. 231.

    Google Scholar 

  26. M. Hillert and B. Sundman:Acta Metall., 1977, vol. 25, p. 11.

    Article  CAS  Google Scholar 

  27. W. J. Boettinger, S. R. Coriell, and R. F. Sekerka: Third Conference on Rapid Solidification Processing, held at NBS in December 1982, R. Mehrabian, Chairman.

  28. J. L. Murray:Metall. Trans. A, 1984.

  29. B. Giessen and R.H. Willens:The Use of Phase Diagrams in Ceramics, Glass, and Metal Technology, Academic Press, NY, 1970, vol. 3, p. 103.

    Google Scholar 

  30. R. J. Schaefer, W. J. Boettinger, F. S. Biancaniello, and S. R. Coriell:Lasers in Metallurgy, TMS-AIME, Warrendale, PA, 1981, p. 43.

    Google Scholar 

  31. R. K. Linde:J. Appl. Phys., 1966, vol. 37, p. 934.

    Article  CAS  Google Scholar 

  32. B. Giessen:Bull. of Alloy Phase Dia., 1980, vol. 1, no. 1, p. 41.

    Article  Google Scholar 

  33. . J.H. Perepezko: Univ. of Wisconsin, Madison, WI, unpublished research, 1983.

  34. T. Yamamura and T. Ejima:J. Japanese Inst. Met., 1973, vol. 37, p. 901.

    Article  CAS  Google Scholar 

  35. J.H. Holloman and D. Turnbull:Prog. Met. Phys., 1953, vol. 4, p. 333.

    Article  Google Scholar 

  36. S. R. Coriell: National Bureau of Standards, Washington, DC, unpublished research, 1983.

  37. H. E. Cline and H. Lee:Acta Metall., 1970, vol. 18, p. 315.

    Article  CAS  Google Scholar 

  38. W. J. Boettinger:Rapidly Solidified Amorphous and Crystalline Alloys, Elsevier, 1982, p. 15.

  39. K.A. Jackson and J.D. Hunt:Trans. TMS-AIME, 1966, vol. 236, p. 1129.

    CAS  Google Scholar 

  40. R. Trivedi: Iowa State University, Ames, IA, unpublished research, 1983.

  41. M.H. Burden and J.D. Hunt:J. Cryst. Growth, 1974, vol. 22, p. 109.

    Article  CAS  Google Scholar 

  42. B.L. Jones, G. M. Weston, and R.T. Southin:J. Cryst. Growth, 1971, vol. 10, p. 313.

    Article  CAS  Google Scholar 

  43. M.H. Burden and J.D. Hunt:J. Cryst. Growth, 1974, vol. 22, p. 328.

    Article  CAS  Google Scholar 

  44. M. J. Aziz: Third Conference on Rapid Solidification Processing held at National Bureau of Standards in December 1982, R. Mehrabian, Chairman; alsoAppl. Phys. Lett., 1983, vol. 43, p. 552.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave at the Center for Materials Research, The Johns Hopkins University, Baltimore, MD 21218.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boettinger, W.J., Shechtman, D., Schaefer, R.J. et al. The Effect of Rapid Solidification Velocity on the Microstructure of Ag-Cu Alloys. Metall Trans A 15, 55–66 (1984). https://doi.org/10.1007/BF02644387

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644387

Keywords

Navigation