Skip to main content
Log in

Chromium depletion in the vicinity of carbides in sensitized austenitic stainless steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The analytical electron microscope (AEM) was used to examine the microstructure of type 316LN stainless steel alloys which had been annealed for 50 to 300 hours in the temperature range 600 to 700 °C. The M23C6 carbide chemistry and distribution are described as a function of heat treatment.X-ray spectroscopy in the AEM revealed significant chromium depletion at grain boundaries in the vicinity of carbides for samples aged at 50 and 100 hours at 650 °C and 100 and 300 hours at 700 °C, with lower grain boundary chromium values observed at 650 °C than at 700 °C. The width of the chromium depleted zone normal to the grain boundaries increased with increasing annealing time and/or temperature. Measurements of chromium concentration along the grain boundaries away from a carbide were made after aging at 700 °C for 100 hours, and the chromium level rose steadily until the bulk value was reached at a distance of ~3μm from the carbide. The width of the chromium depleted zone normal to the boundaries in the same sample was an order of magnitude less. Some molybdenum depletion was also found at the grain boundaries, and the Mo-depletion profiles were in form and extent similar to the chromium results. Simple thermodynamic models were used to calculate the equilibrium value of chromium at the carbide-matrix interface, and the chromium distribution along and normal to the grain boundaries. The results of these models agreed well with the AEM results, and the agreement can be improved by considering the effect of electron probe configuration on the AEM measurements. The calculated thermodynamic data and the AEM results were related to the corrosion behavior of the alloys. The occurrence of severe asymmetries in some concentration profiles normal to the grain boundaries, which increased with increasing annealing temperature or time, was shown to be due to boundary movement during the discontinuous precipitation of M23C6 carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Bain, R. H. Aborn, and J. J. B. Rutherford:Trans. Amer. Steel Treating Society, 1933, vol. 21, pp. 481–509.

    CAS  Google Scholar 

  2. T.M. Devine:J. Electrochemical Soc, 1979, vol. 126, pp. 374–85.

    Article  CAS  Google Scholar 

  3. R. L. Cowan, II, and G. M. Gorden:Proc. Conf. Stress Corr. Cracking and Hydrogen Embrittlement, NACE, Houston, TX, 1977, p. 1025.

    Google Scholar 

  4. K. Osozawa and H. J. Engeil:Corr. Sci., 1966, vol. 6, pp. 389–93.

    Article  CAS  Google Scholar 

  5. W.O. Binder, CM. Brown, and R.H. Franks:Trans. ASM, 1949, vol. 41, pp. 1301–55.

    Google Scholar 

  6. M.L. Holzworth, F. H. Beck, and M. G. Fontana:Corrosion, 1951, vol. 7, pp. 441–49.

    Google Scholar 

  7. P. Chung and S. Sklarska-Smialowska:Corrosion, 1981, vol. 37, pp. 39–50.

    CAS  Google Scholar 

  8. C. L. Briant and A. M. Ritter:Metall. Trans. A, 1980, vol. 11A, pp. 2009–17.

    CAS  Google Scholar 

  9. C.L. Briant and A.M. Ritter:Scripta Met., 1979, vol. 13, pp. 177–81.

    Article  CAS  Google Scholar 

  10. C. L. Briant:Res. Mechanica Letters, 1981, vol. 1, pp. 471–74.

    CAS  Google Scholar 

  11. V. Cihal: C.G. Akinov State Research Institute for the Protection of Materials, Prague, Czechoslovakia, unpublished research, 1969.

  12. R.L. Fullman:Acta Metall., 1982, vol. 30, pp. 1407–15.

    Article  CAS  Google Scholar 

  13. C.L. Briant, R. A. Mulford, and E. L. Hall:Corrosion, 1982, vol. 38, p. 468–77.

    CAS  Google Scholar 

  14. R.A. Mulford, E. L. Hall, and C.L. Briant:Corrosion, 1983, vol. 39, pp. 132–43.

    CAS  Google Scholar 

  15. C.L. Briant:Corrosion, 1980, vol. 36, pp. 497–509.

    CAS  Google Scholar 

  16. J.S. Armijo:Corrosion, 1968, vol. 24, pp. 24–30.

    CAS  Google Scholar 

  17. C. Stawstrom and M. Hillert:J. Iron Steel Inst., 1969, vol. 207, pp. 77–85.

    CAS  Google Scholar 

  18. C.S. Tedmon, Jr., D. A. Vermilyea, and J. H. Rosolowski:J. Electrochemical Soc, 1969, vol. 118, pp. 192–202.

    Article  Google Scholar 

  19. C.S. Pande, M. Suenaga, B. Vyas, H.S. Isaacs, and D.F. Harling:Scripta Met., 1977, vol. 11, pp. 681–84.

    Article  CAS  Google Scholar 

  20. E. L. Hall:Proc. 39th Annual Meeting, Electron Microscopy Society of America, G. W. Bailey, ed., Claitor’s, Baton Rouge, LA, 1981, p. 288.

    Google Scholar 

  21. E. L. Hall:Proc. 40th Annual Meeting, Electron Microscopy Society of America, G.W. Bailey, ed., Claitor’s, Baton Rouge, LA, 1982, p. 518.

    Google Scholar 

  22. M.G. Burke and E.P. Butler:ibid., pp. 514-15.

    Google Scholar 

  23. G. Cliff and G. W. Lorimer:J. Micros., 1975, vol. 103, pp. 203–07.

    Google Scholar 

  24. J.I. Goldstein and D.B. Williams:Quantitative Microanalysis with High Spatial Resolution, The Metals Society, London, 1981, p. 5.

    Google Scholar 

  25. J.I. Goldstein, J.L. Costley, G.W. Lorimer, and S.J.B. Reed:Scanning Electron Microscopy /1977/I, O. Johari, ed., Chicago Press, Chicago, IL, 1977, p. 315.

    Google Scholar 

  26. E. L. Hall, D. Imeson, and J. B. Vander Sande:Phil. Mag. A, 1981, vol. 43, pp. 1569–85.

    CAS  Google Scholar 

  27. E. L. Hall:Journal de Physique, 1982, Colloque C6, Supplement No. 12, vol. 43, pp. C6239-C6254.

    Google Scholar 

  28. M.H. Lewis and B. Hattersley:Acta Metall., 1965, vol. 13, pp. 1159–68.

    Article  CAS  Google Scholar 

  29. L.K. Singhal and J.W. Martin:Trans. TMS-AIME, 1968, vol. 242, pp. 814–19.

    CAS  Google Scholar 

  30. C. DeCasa, V. B. Nileshwar, and D. A. Melford:J. Iron Steel Inst., 1969, vol. 207, pp. 1325–32.

    Google Scholar 

  31. B. Weiss and R. Stickler:Metall. Trans., 1972, vol. 3, pp. 851–66.

    CAS  Google Scholar 

  32. P. D. Southwick and R. W. K. Honeycombe:Metal Science, 1982, vol. 16, pp. 475–81.

    Article  CAS  Google Scholar 

  33. R.J. Bendure, L. C. Ikenberry, and J.H. Waxweiler:Trans. TMS-AIME, 1961, vol. 221, pp. 1032–39.

    CAS  Google Scholar 

  34. K. Natesan and T. F. Kassner:Metall. Trans., 1975, vol. 4, pp. 2557–66.

    Google Scholar 

  35. Bjorn Urenius:Scand. J. Metallurgy, 1977, vol. 6, pp. 7–13.

    Google Scholar 

  36. F. D. Richardson:J. Iron Steel Inst., 1953, vol. 175, pp. 33–51.

    Google Scholar 

  37. C. Zener:J. Appl. Phys., 1949, vol. 20, pp. 950–53.

    Article  CAS  Google Scholar 

  38. F.C. Frank:Proc. Roy. Soc. A, 1950, vol. 201, pp. 586–99.

    Google Scholar 

  39. F.S. Ham:Quart. J. Appl. Math., 1959, vol. 17, pp. 137–45.

    Google Scholar 

  40. J. W. Christian:The Theory of Transformations in Metals and Alloys, p. 440, Pergamon Press, Oxford, 1965, p. 440.

    Google Scholar 

  41. R.L. Fullman:Proc. Seminar in Countermeasures for Pipe Cracking in BWRs, paper 26, EPRI, Palo Alto, CA, 1980.

    Google Scholar 

  42. A.D. Brailsford and H.B. Aaron:J. Appl. Phys., 1969, vol. 40, pp. 1702–10.

    Article  CAS  Google Scholar 

  43. P.G. Shewmon:J. Appl. Phys., 1965, vol. 34, pp. 755–57.

    Article  Google Scholar 

  44. J.H. Rosolowski:Metall. Trans., 1972, vol. 3, pp. 285–90.

    Google Scholar 

  45. P. Duhaj, J. Ivan, and E. Makovicky:J. Iron Steel Inst., 1968, vol. 206, pp. 1245–51.

    CAS  Google Scholar 

  46. U. E. Wolff:Trans. TMS-AIME, 1966, vol. 236, pp. 19–27.

    CAS  Google Scholar 

  47. F.R. Backitt and B.R. Clark:Acta Metall., 1967, vol. 15,pp. 113–29.

    Article  Google Scholar 

  48. K.N. Tu and D. Turnbull:Acta Metall., 1967, vol. 15, pp. 369–76.

    Article  CAS  Google Scholar 

  49. R.A. Fournelle and J.B. Clark:Metall. Trans., 1972, vol. 3, pp. 2757–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, E.L., Briant, C.L. Chromium depletion in the vicinity of carbides in sensitized austenitic stainless steels. Metall Trans A 15, 793–811 (1984). https://doi.org/10.1007/BF02644554

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644554

Keywords

Navigation