Skip to main content
Log in

Rapid solidification of a droplet-processed stainless steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Individual powder particles of a droplet-processed and rapidly solidified 303 stainless steel are characterized in terms of microstructure and composition variations within the solidification structure using scanning transmission electron microscopy (STEM). Fcc is found to be the crystallization phase in powder particles larger than about 70 micron diameter, and bcc is the crystallization phase in the smaller powder particles. An important difference in partitioning behavior between these two crystal structures of this alloy is found in that solute elements are more completely trapped in the bcc structures. Massive solidification of bcc structures is found to produce supersaturated solid solutions which are retained to ambient temperatures in the smallest powder particles. Calculated liquid-to-crystal nucleation temperatures for fcc and bcc show a tendency for bcc nucleation at the large liquid supercoolings which are likely to occur in smaller droplets. The importance of small droplet sizes in rapid solidification processes is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. R. Glickstein, R. J. Patterson, II, and N. E. Shockey:Rapid Solidification Processing Principles and Technologies, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor’s Publishing Division, Baton Rouge, LA, 1978, pp. 46–63.

    Google Scholar 

  2. T. F. Kelly and J. B. Vander Sande:Rapid Solidification Processing Principles and Technologies, II, R. Mehrabian, B.K. Kear, and M. Cohen, eds., Claitor’s Publishing Division, Baton Rouge, LA, 1980, pp. 100–11.

    Google Scholar 

  3. Thomas F. Kelly: Ph.D. Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1982, pp. 26–28.

    Google Scholar 

  4. R.D. Field and H.L. Fraser:Metall. Trans. A, 1978, vol. 9A, pp. 131–34.

    CAS  Google Scholar 

  5. R. A. Perkins:Metall. Trans., 1973, vol. 4, pp. 1665–69.

    CAS  Google Scholar 

  6. R. A. Perkins, R. A. Podgett, and N. K. Tunala:Metall. Trans., 1973, vol. 4, pp. 2535–40.

    CAS  Google Scholar 

  7. E. T. Turkdogan, S. Ignatowicz, and J. Pearson:J. Iron Steel Inst., 1955, vol. 180, p. 349.

    CAS  Google Scholar 

  8. C. E. Lyman and E. L. Hall:Microbeam Analysis, D. E. Newbury, ed., San Francisco Press, San Francisco, CA, 1979, pp. 135–38.

    Google Scholar 

  9. L. Kaufman and H. Bernstein:Computer Calculation of Phase Diagrams, Academic Press, New York, NY, 1970, pp. 36–45.

    Google Scholar 

  10. L. Kaufman: Manlabs, Inc., Cambridge, MA, private communication, 1981.

  11. M. Hillert:Calculation of Phase Diagrams and Thermochemistry of Alloy Phases, Y. A. Chang and J.F. Smith, eds., The Metallurgical Society of AIME, Warrendale, PA, 1979, pp. 1–13.

    Google Scholar 

  12. F. Kohler:Mh. Chem., 1960, vol. 91, p. 738.

    CAS  Google Scholar 

  13. L. Kaufman:CALPHAD, 1977, vol. 1, pp. 7–89.

    Article  Google Scholar 

  14. L. Kaufman and H. Nesor:CALPHAD, 1978, vol. 2, pp. 55–80.

    Article  CAS  Google Scholar 

  15. L. Kaufman and H. Nesor:CALPHAD, 1978, vol. 2, pp. 81–108.

    Article  CAS  Google Scholar 

  16. L. Kaufman:CALPHAD, 1978, vol. 2, pp. 117–46.

    Article  CAS  Google Scholar 

  17. L. Kaufman and H. Nesor:CALPHAD, 1978, vol. 2, pp. 295–318.

    Article  CAS  Google Scholar 

  18. L. Kaufman and H. Nesor:CALPHAD, 1978, vol. 2, pp. 325–48.

    Article  CAS  Google Scholar 

  19. L. Kaufman:CALPHAD, 1979, vol. 3, pp. 45–76.

    Article  Google Scholar 

  20. D. Mclssac: Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, measured on a differential thermal analyzer, private communication, 1982.

  21. D. Turnbull:Contemp. Phys., 1969, vol. 10, pp. 473–88.

    CAS  Google Scholar 

  22. D. Turnbull:J. Chem. Phys., 1952, vol. 20, pp. 411–24.

    Article  CAS  Google Scholar 

  23. F. Spaepen and D. Turnbull:Rapidly Quenched Metals II, N. J. Grant and B.C. Giessen, eds., MIT Press, Cambridge, MA, 1976, pp. 205–30.

    Google Scholar 

  24. F. Spaepen:Acta Metall., 1975, vol. 23, p. 729.

    Article  CAS  Google Scholar 

  25. F. Spaepen and R.B. Meyer:Scr. Metall., 1976, vol. 10, p. 257.

    Article  Google Scholar 

  26. C. V. Thompson: Ph.D. Thesis, School of Applied Sciences, Harvard University, Cambridge, MA, 1981.

    Google Scholar 

  27. N.J. Grant:Rapid Solidification Processing Principles and Technologies, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitor’s Publishing Division, Baton Rouge, LA, 1978, pp. 230–45.

    Google Scholar 

  28. J. I. Goldstein:Introduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein, and D. C. Joy, eds., Plenum Press, New York, NY, 1979, pp. 83–120.

    Google Scholar 

  29. N.J. Zaluzec:Introduction to Analytical Electron Microscopy, J.J. Hren, J.I. Goldstein, and D.C. Joy, eds., Plenum Press, New York, NY, 1979, pp. 121–67.

    Google Scholar 

  30. G. Cliff and G. W. Lorimer:Proc. Fifth European Congress on Electron Microscopy, Institute of Physics, London, 1972, pp. 140–41.

    Google Scholar 

  31. K. F. J. Heinrich:The Electron Microprobe, T. O. McKinley, K. F. J. Heinrich, and D.B. Witt, eds., J. Wiley and Sons, New York, NY, 1966, pp. 296–377.

    Google Scholar 

  32. J. Philibert and R. Tixier:Br. J. Appl. Phys., 1968, vol. 1, p. 685.

    Google Scholar 

  33. J. I. Goldstein, J. L. Costly, G. W. Lorimer, and S. J. B. Reed:SEM, 1977, vol. 1, p. 315.

    Google Scholar 

  34. P. M. Kelly, A. Jostons, R. G. Blake, and J. G. Napier:Phys. Status Solidi A, 1975, vol. 31, pp. 771–80.

    Article  CAS  Google Scholar 

  35. S. M. Allen:Philos. Mag. A, 1981, vol. 43, pp. 325–35.

    CAS  Google Scholar 

  36. J.P. Hirth:Metall. Trans. A, 1978, vol. 9A, pp. 401–04.

    CAS  Google Scholar 

  37. C. V. Thompson, A. L. Greer, and A. J. Drehman:Rapidly Quenched Metals IV, T. Masumoto, ed., The Japanese Institute of Metals, Sendai, Japan, 1981.

    Google Scholar 

  38. P. F. James:Phys. Chem. Glasses, 1974, vol. 15, no. 4, pp. 95–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with Massachusetts Institute of Technology, Cambridge, MA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, T.F., Cohen, M. & vander Sande, J.B. Rapid solidification of a droplet-processed stainless steel. Metall Trans A 15, 819–833 (1984). https://doi.org/10.1007/BF02644556

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644556

Keywords

Navigation