Skip to main content
Log in

Dislocation substructure as a function of strain in a dual-phase steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Dislocation structures in the ferrite of a C-Mn-Si dual-phase steel intercritically annealed at 810°C were characterized at various tensile strains by transmission electron microscopy At strains which corresponded to the second stage on a Jaoul-Crussard plot of strain hardening behavior, the dislocation density in the ferrite is inhomogeneous, with a higher density near the martensite. The third stage on a Jaoul-Crussard plot corresponds to the presence of a well-developed dislocation cell structure in the ferrite. The average cell size during this stage is smaller than the minimum size reported for deformed iron, and the cell size was inhomogeneous, with a smaller cell size near the martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Formable HSLA and Dual-Phase Steels, A. T. Davenport, ed., TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  2. Structure and Properties of Dual-Phase Steels, R. A. Kot and J. W. Morris, eds., TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  3. Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Bramfitt, eds., TMS-AIME, Warrendale, PA, 1981.

    Google Scholar 

  4. W. R. Cribb and J. M. Rigsbee: in Ref. 2, pp. 91–117.

    Google Scholar 

  5. R. D. Lawson, D. K. Matlock, and G. Krauss: in Ref. 3, pp. 347–81.

    Google Scholar 

  6. D. K. Matlock, G. Krauss, L. F. Ramos, and G. S. Huppi: in Ref. 2, pp. 62–90.

    Google Scholar 

  7. K. Ballinger and T. Gladman:Metal Science, March 1981, vol. 15, pp. 95–108.

    Article  Google Scholar 

  8. G.S. Huppi, D.K. Matlock, and G. Krauss:Scripta Met., 1980, vol. 14, pp. 1239–43.

    Article  Google Scholar 

  9. Y. Tomota, K. Kuroki, T. Mori, and I. Tamura:Mat. Sci. and Engr., 1976, vol. 24, pp. 81–94.

    Article  Google Scholar 

  10. K. Araki, Y. Takada, and K. Nakoka:Trans. ISIJ, 1977, vol. 17, pp. 710–17.

    Google Scholar 

  11. I. Tamura, Y. Tomota, and M. Ozawa:Proceedings Third International Conference on the Strength of Metals and Alloys, The Institute of Metals, London, 1973, vol. 1, pp. 611–15.

    Google Scholar 

  12. S.T. Mileiko:J. Mater. Sci., 1969, vol. 4, pp. 974–77.

    Article  Google Scholar 

  13. D.A. Korzekwa, R.D. Lawson, D.K. Matlock, and G. Krauss:Scripta Met., 1980, vol. 14, pp. 1023–28.

    Article  Google Scholar 

  14. A.R. Marder:Metall. Trans. A, 1981, vol. 13A, pp. 85–92.

    Google Scholar 

  15. B. Karlsson and B.O. Sundstrom:Mat. Sci. and Engr., 1974, vol. 16, pp. 161–68.

    Article  Google Scholar 

  16. M. F. Ashby: inStrengthening Methods in Crystals, A. Kelly and R. B. Nicholson, eds., John Wiley & Sons, New York, NY, 1971, pp. 137–92.

    Google Scholar 

  17. D.A. Korzekwa, D.K. Matlock, and G. Krauss:Metall. Trans. A, 1982, vol. 13A, pp. 2061–64.

    Article  Google Scholar 

  18. R. D. Lawson, D. K. Matlock, and G. Krauss:Metallography, 1980, vol. 13, pp. 71–87.

    Article  Google Scholar 

  19. B. Jaoul:J. Mech. Phys. Solids, 1957, vol. 5, pp. 95–114.

    Article  Google Scholar 

  20. D. Kuhlman-Wilsdorf: inWork Hardening in Tension and Fatigue, A. W. Thompson, ed., TMS-AIME, New York, NY, 1975, pp. 1–44.

    Google Scholar 

  21. G. Langford and M. Cohen:Transactions Quarterly, ASM, 1969, vol. 62, pp. 623–38.

    Google Scholar 

  22. A. S. Keh and S. Weissmann: inElectron Microscopy and Strength of Crystals, Interscience Publishers, New York, NY, 1963, pp. 231–300.

    Google Scholar 

  23. J.M. Moyer and G.S. Ansell:Metall. Trans. A, 1975, vol. 6A, pp. 1785–91.

    Article  Google Scholar 

  24. M.S. Rashid: in Ref. 1, pp. 1–24.

    Google Scholar 

  25. J. Gerbase, J.D. Embury, and R. M. Hobbs: in Ref. 2, pp. 118–44.

    Google Scholar 

  26. S. Hayami and T. Furakawa:Microalloying 75, Union Carbide rp., New York, NY, 1975, pp. 311–21.

    Google Scholar 

  27. W. Leslie:The Physical Metallurgy of Steels, McGraw-Hill, New York, NY, 1981, pp. 97–104.

    Google Scholar 

  28. E. Hornbogen:Transactions of the ASM, 1964, vol. 57, pp. 120–31.

    Google Scholar 

  29. W. Carrington, K. F. Hale, and D. McLean:Royal Society of London Proc, 1960, vol. 259, pp. 203–27.

    Article  Google Scholar 

  30. L. F. V. Ramos: Ph.D. Thesis #T-2198, Colorado School of Mines, Golden, CO, 1979.

    Google Scholar 

  31. A. W. Thompson:Metall. Trans. A, 1977, vol. 8A, pp. 833–43.

    Article  Google Scholar 

  32. D.L. Holt:J. of App. Physics, 1970, vol. 41, pp. 3197–3201.

    Article  Google Scholar 

  33. G.R. Speich: in Ref. 3, pp. 3–45.

    Google Scholar 

  34. D. K. Matlock, G. Krauss, and F. Zia-Ebrahimi:Deformation, Processing, andStructure, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 47–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Assistant at the Colorado School of Mines

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korzekwa, D.A., Matlock, D.K. & Krauss, G. Dislocation substructure as a function of strain in a dual-phase steel. Metall Trans A 15, 1221–1228 (1984). https://doi.org/10.1007/BF02644716

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644716

Keywords

Navigation