Skip to main content
Log in

Behavior of ceramic particles at the solid- liquid metal interface in metal matrix composites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Directional solidification experiments have been conducted to document SiC particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. Particle size ranged from 20 to 150 μm diameter. Although predictions based on the thermodynamic approach suggest that no engulfment is possible, it was demonstrated that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. The main factors responsible for this behavior are considered to be the difference between the thermal conductivities of particles and metal, the buildup of volume fraction of particles at the interface, and the morphological instability of the interface induced by the particles. A model including the contribution of drag and thermal conductivity has been proposed. Calculation with this model produced numbers for the critical velocity slightly higher than those evaluated experimentally. Various factors which can account for this discrepancy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d o :

Interatomic distance

δFnet :

Net change in free energy during engulfment

F :

Force acting on particle

F d :

Drag force

F r :

Repulsive force

f p :

Volume fraction of particles

G, G 1 :

Thermal gradient in liquid

G p :

Thermal gradient in particle

g :

Acceleration due to gravity

K :

Constant in Neumann's equation

k :

Boltzmann's constant

k p :

Thermal conductivity of particle

k L :

Thermal conductivity of liquid

N :

No. of points at which particle is in contact with

N :

No. of points at which particle is in contact with

V cr :

Critical growth velocity

r :

Radius of particle

r b :

Radius of bump

T :

Temperature

T 1 T2 :

Temperatures on outside of particle

T M :

Melting temperature╖

References

  1. D. R. Uhlmann, B. Chalmers, and K. A. Jackson:J. Applied Physics, 1964, vol. 35, no. 10, p. 2986.

    Article  CAS  Google Scholar 

  2. P. K. Rohatgi, R. Asthana, and S. Das:International Metals Reviews, 1988, vol. 31, no. 3, p. 115.

    Google Scholar 

  3. K. C. Russell, J. A. Cornie, and S. Y. Oh:Interfaces in Metal-Matrix Composites, Proceedings of a TMS Symposium, A. K. Dhingra and S. G. Fishman, eds., The Metallurgical Society, 1986, p. 61.

  4. S. N. Omenyi and A. W. Neumann:J. Applied Physics, 1976, vol. 47, no. 9, p. 3956.

    Article  CAS  Google Scholar 

  5. G. F. Boiling and J. Cissé:J. Crystal Growth, 1971, vol. 10, p. 56.

    Article  Google Scholar 

  6. A. A. Chernov, D. E. Temkin, and A. M. Melnikova:Soviet Phys. Crystallography, 1976, vol. 21, no. 4, p. 369.

    Google Scholar 

  7. J. Cissé and G. F. Boiling:J. Crystal Growth, 1971, vol. 11, p. 25.

    Article  Google Scholar 

  8. M. K. Surappa and P. K. Rohatgi:J. Mater. Sci. Lett., 1981, vol. 16, no. 2, p. 765.

    Google Scholar 

  9. A. M. Zubko, V. G. Lobanov, and V. V. Nikonova:Soviet Phys. Crystallography, 1973, vol. 18, p. 239.

    Google Scholar 

  10. C. E. Schvezov and F. Weinberg:Metall. Trans. B, 1985, vol. 16B, pp. 367–75.

    Article  CAS  Google Scholar 

  11. R. Sprull:Modern Physics, John Wiley, New York, NY, 1956, pp. 193–95.

    Google Scholar 

  12. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird:Molecular Theory of Gases and Liquids, John Wiley, New York, NY, 1954.

    Google Scholar 

  13. G. H. Geiger and D. R. Poirier:Transport Phenomena in Metallurgy, Addison Wesley Pub. Company, Reading, MA, 1973, p. 18 and p. 70.

    Google Scholar 

  14. M. W. Barsoum and P. D. Ownby:Surfaces and Interfaces in Ceramic Metals Systems, J. Pash and A. Evans, eds., Plenum Press, 1981, p. 463.

  15. Handbook of Chemistry and Physics, 66th ed., CRC Press, 1985–1986, p. F-20.

  16. L. E. Murr:Interfacial Phenomena in Metals and Alloys, Addison-Wesley Pub. Company, Reading, MA, 1975.

    Google Scholar 

  17. V. Laurent, D. Chatain, and N. Eustathopoulos:J. of Materials Science, 1987, vol. 22, pp. 244–50.

    Article  CAS  Google Scholar 

  18. W. R. Wilcox:J. of Colloid and Interface Sci., 19, vol. 77, no. 1, pp. 213-18.

  19. D. M. Stefanescu, M. Fiske, and P. A. Curreri:Materials for Space—The Gathering Momentum, 18th International SAMPE Technical Conference, J. T. Hoggatt, S. G. Hill, and J. C. Johnson, eds., 1986, vol. 18, p. 309.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanescu, D.M., Dhindaw, B.K., Kacar, S.A. et al. Behavior of ceramic particles at the solid- liquid metal interface in metal matrix composites. Metall Trans A 19, 2847–2855 (1988). https://doi.org/10.1007/BF02645819

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645819

Keywords

Navigation