Skip to main content
Log in

Effects of sic content on fatigue crack growth in Aluminum Alloys Reinforced with SiC Particles

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An experimental study has been conducted with the purpose of examining the fatigue crack growth characteristics of cast aluminum alloy matrix composites reinforced with different vol- ume fractions of silicon carbide particles. Particular attention has been paid to developing com- posite microstructures with similar matrix aging condition, precipitation, matrix strength, reinforcement particle size distribution, and interfacial characteristics but with different con- trolled amounts of reinforcement particles. Fatigue crack growth experiments have been con- ducted using constant stress amplitude methods with a fixed load ratio as well as constant Kmax control involving a varying load ratio. The development of crack closure and the microscopic path of the crack through the composite microstructure are monitored optically and using the electron microscope in an attempt to examine the mechanisms of fatigue fracture. The results indicate that an increase in SiC content results in the suppression of striation formation in the ductile matrix. Although ductile matrix failure involving the formation of striations in the low SiC content composite or of void growth in the high SiC content composite is evident, the results also show that fracture of the reinforcement particles plays a significant role in dictating the rates of fatigue crack growth. Detailed quantitative analyses of the extent of particle fracture as a function of the reinforcement content have been performed to elucidate the mechanistic origins of fatigue resistance. The propensity of particle fracture increases with particle size and with the imposed value of stress intensity factor range. While discontinuously reinforced metal- matrix composites with predominantly matrix cracking are known to exhibit superior fatigue crack growth resistance as compared to the unreinforced matrix alloy, the tendency for particle fracture in the present set of experiments appears to engender fatigue fracture characteristics in the composite which are inferior to those seen in the unreinforced matrix material. Particle fracture also results in noticeable differences in the microscopic fracture path and causes a reduction in crack closure in the composites as compared to that in the matrix alloy. The results of this work are discussed in light of other related studies available in the literature in an attempt to develop a mechanistic perspective on fatigue crack growth resistance in metal-matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Divecha, C.R. Crowe, and S.G. Fishman:Failure Modes in Composites IV, TMS-AIME, Warrendale, PA, 1977, p. 406.

    Google Scholar 

  2. A.P. Divecha, S.G. Fishman, and S.D. Karmarkar:J. Met., 1981, vol. 33, p. 12.

    CAS  Google Scholar 

  3. D.C. Drucker:J. Mater. Sci., 1966, vol. 1, p. 873.

    Google Scholar 

  4. D.A. Koss and S.M. Copley:Metall. Trans. A, 1971, vol. 2, pp. 1557–60.

    Article  CAS  Google Scholar 

  5. C.H. Anderson and R. Warren:J. Compos. Mater., 1984, vol. 15, p. 16.

    Google Scholar 

  6. M. Taya and R.J. Arsenault:Metal Matrix Composites: Thermomechanical Behavior, Pergamon Press, Elmsford, NY, 1989.

    Google Scholar 

  7. L.M. Brown and W.M. Stobbs:Phil. Mag., 1971, vol. 23, p. 1185.

    Article  CAS  Google Scholar 

  8. T. Christman, A. Needleman, and S. Suresh:Acta Metall., 1989, vol. 37, p. 3029.

    Article  CAS  Google Scholar 

  9. J. Llorca, A. Needleman, and S. Suresh:Scripta Metall., 1990, vol. 24, p. 1203.

    Article  CAS  Google Scholar 

  10. V.C. Nardone:Scripta Metall., 1987, vol. 21, p. 1313.

    Article  CAS  Google Scholar 

  11. S.S. Yau and G. Mayer:Mater. Sci. Eng., 1986, vol. 82, p. 45.

    Article  CAS  Google Scholar 

  12. W.A. Logsdon and P.K. Liaw:Eng. Fract. Mech., 1986, vol. 24, p. 737.

    Article  Google Scholar 

  13. J.J. Bonnen, J.E. Allison, and J.W. Jones:Metall. Trans. A, 1991, vol. 22A, pp. 1007–19.

    Article  CAS  Google Scholar 

  14. T. Christman and S. Suresh:Mater. Sci. Eng., 1988, vol. 102, p. 211.

    Article  Google Scholar 

  15. J.K. Shang and R.O. Ritchie:Acta Metall., 1989, vol. 37, p. 2267.

    Article  CAS  Google Scholar 

  16. S. Kumai, J.E. King, and J.F. Knott:Fat. Fract. Eng. Mater. Struct., 1990, vol. 13, p. 511.

    Article  Google Scholar 

  17. A.J. Padkin, M.F. Bereton, and W.J. Plumbridge:Mater. Sci. Technol., 1987, vol. 3, p. 217.

    Article  CAS  Google Scholar 

  18. K. Hirano: inProc. 4th Int. Conf. on Fatigue and Fatigue Thresholds, H. Kitagawa and T. Tanaka, eds., Materials and Component Engineering Publications Ltd., Birmingham, England, 1990, vol. 2, p. 863.

    Google Scholar 

  19. J. Llorca, S. Suresh, and A. Needleman:Metall. Trans. A, 1992, vol. 23A, pp. 919–34.

    Article  CAS  Google Scholar 

  20. S. Suresh:Fatigue of Materials, Cambridge University Press, Cambridge, U.K., 1991.

    Google Scholar 

  21. D.L. Davidson:Eng. Fract. Mech., 1989, vol. 33, p. 965.

    Article  Google Scholar 

  22. S. Kumai, J.E. King, and J.F. Knott:Fat. Fract. Eng. Mater. Struct., 1992, vol. 15, p. 1.

    Article  CAS  Google Scholar 

  23. T. Christman and S. Suresh:Acta Metall., 1988, vol. 6, p. 1691.

    Article  Google Scholar 

  24. S. Suresh, T. Christman, and Y. Sugimura:Scripta Metall., 1989, vol. 23, p. 1599.

    Article  CAS  Google Scholar 

  25. I. Dutta and D.L. Bourell:Mater. Sci. Eng., 1989, vol. 112, p. 67.

    Article  Google Scholar 

  26. K.K. Chawala, A.H. Esmaeili, A.K. Datye, and A.K. Vasudevan:Scripta Metall., 1991, vol. 25, p. 1315.

    Article  Google Scholar 

  27. S. Suresh and K.K. Chawala: inFundamentals of Metal-Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1992, in press.

    Google Scholar 

  28. W.H. Hunt, J.R. Brochenbrough, and P.E. Magnusen:Scripta Metall., 1991, vol. 25, p. 15.

    Article  CAS  Google Scholar 

  29. T. Mochida, M. Taya, and D.J. Lloyd:Mater. Trans. JIM, 1991, vol. 32, p. 931.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimura, Y., Suresh, S. Effects of sic content on fatigue crack growth in Aluminum Alloys Reinforced with SiC Particles. Metall Trans A 23, 2231–2242 (1992). https://doi.org/10.1007/BF02646016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646016

Keywords

Navigation