Skip to main content
Log in

Fracture and toughening mechanisms in an α2 titanium aluminide alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The deformation and fracture behaviors of the Ti-24Al-11Nb alloy with an equiaxed α2 + β microstructure have been characterized as a function of temperature by performing uniaxial tension andJ IC fracture toughness tests. The micromechanisms of crack initiation and growth have been studied bypost mortem fractographic and metallographic examinations of fractured specimens, as well as byin situ observation of the fracture events in a scanning electron microscope (SEM) equipped with a high-temperature loading stage. The results indicate that quasistatic crack growth in the Ti-24Al-11Nb alloy occurs by nucleation and linkage of the microcracks with the main crack, with the latter frequently bridged by ductile β ligaments. Three microcrack initiation mechanisms have been identified: (1) decohesion of planar slipbands in the α2 matrix, (2) formation of voids and microcracks in β, and (3) cracking at or near the α2 + β interface due to strain incompatibility resulting from impinging planar slip originated in α2. The sources of fracture toughness in the 25 °C to 450 °C range have been attributed to crack tip blunting, crack deflection, and a bridging mechanism provided by the ductile β phase. At 600 °C, a change of toughening mechanisms leads to a lowering of the initiation toughness (theK IC value) but a drastic increase in the crack growth toughness and the tearing modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M.L. Sastry and H.A. Lipsitt:Metall. Trans. A, 1977, vol. 8A, pp. 1543–52.

    CAS  Google Scholar 

  2. H.A. Lipsitt, D. Shechtman, and R.E. Schafrik:Metall. Trans. A, 1980, vol. 11A, pp. 1369–75.

    CAS  Google Scholar 

  3. M.J. Blackburn:Trans. AIME, 1967, vol. 239, pp. 1200–08.

    CAS  Google Scholar 

  4. J.C. Williams and M.J. Blackburn: inOrdered Alloys: Structural Applications and Physical Metallurgy, B.H. Kear, C.T. Sims, N.S. Stoloff, and J.H. Westbrook, eds., Claitor’s Publishing Division, Baton Rouge, LA, 1970, pp. 425–45.

    Google Scholar 

  5. Y.-W. Kim and F.H. Froes: inHigh-Temperature Aluminides and lntermetallics, S.H. Whang, C.T. Liu, D. Pope, and J.O. Stiegler, eds., TMS, Wanendale, PA, 1990, pp. 465–92.

    Google Scholar 

  6. M.J. Blackburn, D.L. Ruckle, and C.E. Bevan: Technical Report AFML-TR-78-18, Air Force Materials Laboratory, Dayton, OH, 1978.

    Google Scholar 

  7. M.J. Blackburn and M.P. Smith: Technical Report AFWAL-TR-81-4046, Air Force Wright Aeronautical Laboratories, Dayton, OH, 1981.

    Google Scholar 

  8. M.J. Blackburn and M.P. Smith: Technical Report No. AFWAL-TR-82-4086, Air Force Wright Aeronautical Laboratories, Dayton, OH, 1982.

    Google Scholar 

  9. J.M. Larsen, K.A. Williams, S.J. Balsone, and M.A. Stucke: inHigh-Temperature Aluminides and lntermetallics, S.H. Whang, C.T. Liu, D. Pope, and J.O. Stiegler, eds., TMS, Warrendale, PA, 1990, pp. 521–56.

    Google Scholar 

  10. H.A. Lipsitt: inProcessing and Properties of Advanced High-Temperature Alloys, S.M. Allen, R.M. Pelloux, and R. Widmer, eds., ASM, Metals Park, OH, 1985, pp. 157–64.

    Google Scholar 

  11. Proc. MRS Symp. on High-Temperature Ordered Intermetallic Alloys III, C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Kock, eds., MRS, Pittsburgh, PA, 1989, vol. 133.

    Google Scholar 

  12. Proc. TMS Symp. on High-Temperature Aluminides and lntermetallics, S.H. Whang, C.T. Liu, D. Pope, and J.O. Stiegler, eds., TMS Warrendale, PA, 1990.

    Google Scholar 

  13. R. Strychor, J.C. Williams, and W.A. Soffa:Metall. Trans. A, 1988, vol. 19A, pp. 225–34.

    CAS  Google Scholar 

  14. S.M.L. Sastry and H.A. Lipsitt: inTitanium ’80, Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, vol. 2, pp. 1231–43.

    Google Scholar 

  15. W.J.S. Yang:J. Mater. Sci. Lett., 1982, vol. 1, pp. 199–202.

    Article  CAS  Google Scholar 

  16. W.J.S. Yang:Metall. Trans. A, 1982, vol. 13A, pp. 324–28.

    CAS  Google Scholar 

  17. S.A. Court, M.H. Loretto, and H.L. Fraser: Scripta Metall., vol. 21, pp. 997–1002.

  18. P.A. Lukasak and D.A. Koss:Metall. Trans. A, 1990, vol. 21A, pp. 135–43.

    CAS  Google Scholar 

  19. W.Y. Chu, A.W. Thompson, and J.C. Williams:Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds., TMS, Warrendale, PA, 1990, pp. 543–54.

    Google Scholar 

  20. P.B. Aswath and S. Suresh: Paper presented atTMS Symp. on High-Temperature Aluminides and lntermetallics, S.H. Whang, C.T. Liu, D. Pope, and J.O. Stiegler, organizers, TMS, Fall meeting, Indianapolis, IN, Oct. 1–5, 1989.

    Google Scholar 

  21. D.A. Koss, D. Banerjee, and D.A. Lukasak:High-Temperature Aluminides and lntermetallics, S.H. Whang, C.T. Liu, D. Pope, and J.O. Stiegler, eds., TMS, Warrendale, PA, 1990, pp. 145–96.

    Google Scholar 

  22. Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1983, pp. 762–86.

  23. A. Nagy, J.B. Campbell, and D.L. Davidson:Rev. Sci. Instrum., 1984, vol. 55, pp. 778–82.

    Article  Google Scholar 

  24. E.A. Franke, D.J. Wenzel, and D.L. Davidson:Rev. Sci. Instrum., 1990, in press.

  25. D.L. Davidson, K.S. Chan, and R.A. Page: inMicromechanics: Experimental Techniques, W. Sharpe, ed., ASME, New York, NY, 1989, AMD-vol. 102, pp. 73–87.

    Google Scholar 

  26. D.R. Williams, D.L. Davidson, and J. Lankford:Experimental Mechanics, 1980, vol. 20, pp. 134–39.

    Article  Google Scholar 

  27. J.A. Begley and J.D. Landes:Fracture Toughness, ASTM STP 514, ASTM, Philadelphia, PA, 1972, pp. 1–20.

    Google Scholar 

  28. P.C. Paris, H. Tada, A. Zahoor, and H. Ernst:Elastic-Plastic Fracture, ASTM STP 668, J.D. Landes, J.A. Begley, and G.A. Clarke, eds., ASTM, Philadelphia, PA, 1979, pp. 5–36 and 251–65.

    Google Scholar 

  29. V.D. Kristic:Phil. Mag., 1983, vol. 48A, pp. 695–708.

    Google Scholar 

  30. L.S. Sigh, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking, and A.G. Evans:Acta Metall., 1988, vol. 36, pp. 945–53.

    Article  Google Scholar 

  31. B. Budiansky, J.C. Amazigo, and A.G. Evans:J. Mech. Phys. Solids, 1988, vol. 36, pp. 167–87.

    Article  Google Scholar 

  32. J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  33. J.R. Rice and G.R. Rosengren:J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–13.

    Article  Google Scholar 

  34. C.F. Shih:Mechanics of Crack Growth, ASTM STP 590, ASTM, Philadelphia, PA, 1976, pp. 3–26.

    Google Scholar 

  35. C. F. Shih and J.W. Hutchinson:ASME J. Eng. Mater. Technol., 1976, vol. 98, pp. 289–95.

    Google Scholar 

  36. V. Kumar, M.D. German, W.W. Wilkening, W.R. Andrews, H.G. de Lorenzi, and D.F. Mowbray:Advances in Elastic-Plastic Fracture Analysis, EPRI NP-3607, 1984, pp. 2.1–2.20.

  37. M.F. Kanninen and C.H. Popelar:Advances Fracture Mechanics, Oxford University Press, New York, NY, 1985, pp. 317–18 and 546–57.

    Google Scholar 

  38. R.O. Ritchie and R.M. Cannon: Report No. LBL-20656, Lawrence Berkeley Laboratory, University of California, Berkeley, CA, 1985.

    Google Scholar 

  39. J.P. Hirth, R.G. Hoagland, and C.H. Popelar:Acta Metall., 1984, vol. 32, pp. 371–79.

    Article  Google Scholar 

  40. L.R.F. Rose:Int. J. Fract., 1986, vol. 31, pp. 233–42.

    Article  CAS  Google Scholar 

  41. R.G. Hoagland and J.D. Embury:J. Am. Ceram. Soc, 1980, vol. 63, pp. 404–10.

    Article  CAS  Google Scholar 

  42. A.G. Evans and K.T. Faber: inFracture in Ceramics Materials, A.G. Evans, ed., Noyes Publications, Park Ridge, NJ, 1984, pp. 109–34.

    Google Scholar 

  43. S. Suresh:Metall. Trans. A, 1985, vol. 16A, pp. 249–60.

    CAS  Google Scholar 

  44. J.R. Rice, W.J. Drugan, and T.L. Sham:Fracture Mechanics: 12th Conf., ASTM STP 700, ASTM, Philadelphia, PA, 1980, pp. 189–221.

    Google Scholar 

  45. K.S. Chan:Metall. Trans. A, 1989, vol. 20A, pp. 155–64.

    CAS  Google Scholar 

  46. K.S. Chan:Acta Metall., 1989, vol. 37, pp. 1217–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S. Fracture and toughening mechanisms in an α2 titanium aluminide alloy. Metall Trans A 21, 2687–2699 (1990). https://doi.org/10.1007/BF02646064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646064

Keywords

Navigation