Skip to main content
Log in

Effect of heat treatment on delayed hydride cracking in Zr-2.5 Wt Pct Nb

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of heat treatments on delayed hydride cracking (DHC) in Zr-2.5 wt pct Nb has been studied. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by water-quenching, oil-quenching, liquid-nitrogen quenching, and furnace cooling. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates and a stronger dependence of the crack velocity on the applied-stress intensity factor. Also, the incubation period before cracking commences was found to be relatively short for specimens with fine hydrides, whereas specimens with coarse hydrides required considerably longer incubation periods. These results can be explained by rapid growth of preexisting hydrides within the crack-tip plastic zone. In addition, different solution temperatures were used to investigate the effect of the continuity of the grain-boundary phase-phase) on the crack velocity. Transmission electron microscopy was used to examine the structure of this grain-boundary phase. It was found that for heat treatments, which destroyed theβ-phase continuity, the crack velocity was significantly reduced, as would be expected from the theory of enhanced diffusion through grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dutton:Can. Met. Quarterly, 1978, vol. 17, pp. 16–25.

    CAS  Google Scholar 

  2. D.G. Westlake:Trans. ASM, 1969, vol. 62, pp. 1000–06.

    CAS  Google Scholar 

  3. H.K. Birnbaum:Scripte Metall., 1976, vol. 10, pp. 747–50.

    Article  CAS  Google Scholar 

  4. H. K. Birnbaum, M. Grossbeck, and S. Gahzin:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 303–23.

    Google Scholar 

  5. C.J. Simpson and C. E. Ells:J. Nucl. Mat., 1974, vol. 52, pp. 289–95.

    Article  CAS  Google Scholar 

  6. E. C.W. Perryman:Nucl. Energy, 1978, vol. 17, pp. 95–105.

    CAS  Google Scholar 

  7. R. Dutton and M. P. Puis:Effect of Hydrogen on Behavior of Materials, A.W. Thompson and I. M. Bernstein, eds., Met. Soc. AIME, 1976, pp. 516–28.

  8. R. Dutton, K. Nuttall, M. P. Puls, and L. A. Simpson:Metall. Trans. A, 1977, vol. 8A, pp. 1553–62.

    CAS  Google Scholar 

  9. R. Dutton, C. H. Woo, K. Nuttall, L. A. Simpson, and M. P. Puis:Hydrogen in Metals, Pergamon Press, Oxford, 1978, vol. 1, 3C6, pp. 1–8.

    Google Scholar 

  10. L. A. Simpson and M. P. Puls:Metall. Trans. A, 1979, vol. 10A, pp. 1093–1105.

    CAS  Google Scholar 

  11. L. A. Simpson and K. Nuttall:Zirconium in the Nuclear Industry, ASTM STP 633, 1977, pp. 608–29.

  12. M. P. Puis, L. A. Simpson, and R. Dutton:Proc. 5th Canadian Fracture Conference, L. A. Simpson, ed., Pergamon Press, Oxford, 1982, pp.13–25.

    Google Scholar 

  13. C.E. Coleman and J.F. R. Ambler:Zirconium in the Nuclear Industry, ASTM STP 633, 1977, pp. 589–607.

  14. C.E. Coleman and J.F. R. Ambler:Can. Met. Quarterly, 1978, vol. 17, pp. 81–84.

    CAS  Google Scholar 

  15. C.E. Coleman and J. F. R. Ambler:Scripta Metall., 1983, vol. 17, pp. 77–82.

    Article  CAS  Google Scholar 

  16. M.P. Puls:Acta Metall., 1981, vol. 29, pp. 1961–68.

    Article  CAS  Google Scholar 

  17. M.P. Puls:Acta Metall., 1984, vol. 32, pp. 1259–69.

    Article  CAS  Google Scholar 

  18. Y. Mishima, T. Okubo, and E. Sano:Metall. Trans., 1971, vol. 2, pp. 1995–97.

    CAS  Google Scholar 

  19. P. Mayer and C. J. Simpson:Hydrogen in Metals, Proceedings of the 2nd International Congress, 1977, vol. 2, 1D5, pp. 1–6.

    Google Scholar 

  20. A. Sawatzky, G. A. Ledoux, R. L. Tough, and C. D. Cann:Proc. Miami Internat. Symp. on Metal-Hydrogen Systems, T. N. Verizoglu, ed., Pergamon Press, Oxford, 1982, pp. 109–20.

    Google Scholar 

  21. S.A. Aldridge and B.A. Cheadle:J. Nucl. Mater., 1972, vol. 42, pp. 32–42.

    Article  CAS  Google Scholar 

  22. L. A. Simpson and CD. Cann:J. Nucl. Mater., 1984, vol. 126, pp. 70–73.

    Article  CAS  Google Scholar 

  23. M. Leger and A. Donner:Can. Met. Quarterly, 1985, vol. 24, pp. 235–43.

    CAS  Google Scholar 

  24. V. Perovic, G. C. Weatherly, and C. J. Simpson:Acta Metall., 1983, vol. 31, pp. 1381–91.

    Article  CAS  Google Scholar 

  25. L. A. Simpson and C .F. Clarke: Report No. AECL 5815, Atomic Energy of Canada Limited, 1978, Pinawa, MB, Canada.

  26. C. D. Cann and A. Atrens:J. Nucl. Mater., 1980, vol. 88, pp. 42–50.

    Article  CAS  Google Scholar 

  27. D. O. Norwood and N. Kosasch:International Metals Reviews, 1983, vol. 28, pp. 92–121.

    Google Scholar 

  28. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards:Metall. Trans. A, 1976, vol. 7A, pp. 821–29.

    CAS  Google Scholar 

  29. J.F. Ambler: AECL Progress Report (PR-FM-73P) Atomic Energy of Canada Ltd., 1985, Chalk River, ON, Canada.

  30. K. F. Amouzouvi and L. J. Clegg: Atomic Energy of Canada Limited, WNRE, Pinawa, MB, Canada, unpublished research, 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amouzouvi, K.F., Clegg, L.J. Effect of heat treatment on delayed hydride cracking in Zr-2.5 Wt Pct Nb. Metall Trans A 18, 1687–1694 (1987). https://doi.org/10.1007/BF02646200

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646200

Keywords

Navigation