Skip to main content
Log in

Isothermal martensite formation in an AISI 52100 ball bearing steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The formation of isothermal martensite from the retained austenite in an AISI 52100 ball bearing steel was investigated. Optical microscopy reveals that there are mainly two types of isothermal martensite formation: the growth of the athermal martensite and the nucleation and growth of new martensite in the retained austenite. X-ray diffraction shows that during the isothermal transformation, the ratio of lattice constantsc/a decreases, and TEM verifies the precipitation of Fe, Cr)3C in martensite. The kinetics of the isothermal transformation in the quenched steel also shows “C” shape characteristic. At the first stage of the isothermal formation, recovery of the athermal martensite occurs with an activation energy of 91.8 kJ mol-1, implying that the diffusion of carbon in athermal martensite results in the precipitation of carbide and the relaxation of the strain energy at the martensite/matrix boundary. In the second stage, the activation energy for the isothermal formation is 130 kJ mol-1; that may be the energy required for the rearrangement of the configuration of dislocations, forming preferred sites for nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Averbach, M. Cohen, and S. G. Fletcher:Trans ASM, 1948, vol. 40, pp. 728–57.

    Google Scholar 

  2. B.L. Averbach and M. Cohen:Trans. ASM, 1949, vol.41, pp. 1024–60.

    Google Scholar 

  3. V.I. Prosvirin and S.D. Entin:Isothermal Formation of Martensite (in Russian), Mashgiz, 1953, pp. 42-48, 68-74.

  4. Chang Pei-lin and Hsu Tsui-chang:Acta Metall. Sinica, 1956, vol. 1, pp. 347–66.

    Google Scholar 

  5. Hsu Tzo-yao, Tsu Chueh-ju, and Wang Yung-yung:Acta Metall. Sinica, 1964, vol. 7, pp. 437–41.

    Google Scholar 

  6. C.A.V. de A. Rodrigues, C. Prioul, and L. Hyspecka:Metall. Trans. A, 1984, vol. 15A, pp. 2193–203.

    CAS  Google Scholar 

  7. C.H. Shih, B.L. Averbach, and M. Cohen:Trans. AIME, 1955, vol. 203, pp. 183–87, 1265-66.

    Google Scholar 

  8. K. Wakasa and C.M. Wayman:Metallography, 1981, vol. 14, pp. 37–48.

    Article  CAS  Google Scholar 

  9. M.L. Bernshtein, L. M. Kaputkins, and S.D. Prokoshkin:Scripta Metall., 1984, vol. 18, pp. 863–68.

    Article  CAS  Google Scholar 

  10. S.R. Pati and M. Cohen:Acta Metall., 1971, vol. 19, pp. 1327–32.

    Article  CAS  Google Scholar 

  11. M. Grujicic, G.B. Olson, and W. S. Owen: Proc. Intern. Conf. Martensitic Transformations, ICOMAT-82, L. Delaey and M. Chandrasekaran, eds.,J. de Phys., tome 43, Supplement, 1982, pp. C4-173-78.

  12. C.L. Magee:Metall. Trans., 1971, vol. 2, pp. 2419–30.

    Article  CAS  Google Scholar 

  13. L. Kaufman and M. Cohen:Prog. Metal Phys., 1958, pp. 165-246.

  14. T. Y. Hsu (Xu Zuyao) and Chang Hongbing:Acta Metall, 1984, vol. 32, pp. 343–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student.

Formerly Graduate Student, Department of Materials Science and Engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, T.Y., Yexin, C. & Weiye, C. Isothermal martensite formation in an AISI 52100 ball bearing steel. Metall Trans A 18, 1389–1394 (1987). https://doi.org/10.1007/BF02646652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646652

Keywords

Navigation