Skip to main content
Log in

Correlation of deformation mechanisms with the tensile and compressive behavior of NiAl and NiAl(Zr) intermetallic alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

To identify the mechanisms controlling strength and ductility in powder-extruded NiAl and NiAl + 0.05 at. pct Zr, tensile and compressive testing was performed from 300 to 1300 K for several grain sizes. Grain size refinement significantly increased yield stress in both alloys and, in some cases, slightly lowered the ductile-to-brittle transition temperature (DBTT), although no room-temperature tensile ductility was observed even in the finest grain size specimens. The small Zr addition increased the DBTT and changed the low-temperature fracture mode from intergranular in NiAl to a combination of intergranular and transgranular in the Zr-doped alloy. Scanning electron microscopy (SEM) of compression specimens deformed at room temperature revealed the presence of grain-boundary cracks in both alloys. These cracks were due to the incompatibility of strain in the poly crystalline material, owing to the lack of five independent slip systems. The tendency to form grain-boundary cracks, in addition to the low fracture stress of these alloys, contributed to the lack of tensile ductility at low temperatures. The operative slip system, both below and above the DBTT, was {110} 〈001〉 for both alloys. The change from brittle to ductile behavior with increasing temperatures was associated with the onset of diffusional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Herz: WADC Technical Report No. 52-291, 1955, pp. 1–69.

  2. A. Ball and R.E. Smallman:Acta Metall, 1966, vol. 14, pp. 1349–55.

    Article  CAS  Google Scholar 

  3. A.G. Rozner and R.J. Wasilewski:J. Inst. Met., 1966, vol. 94, pp. 169–75.

    CAS  Google Scholar 

  4. R.T. Pascoe and C.W.A. Newey:Met. Sci. J., 1968, vol. 2, pp. 138–41.

    Article  CAS  Google Scholar 

  5. R.T. Pascoe and C.W.A. Newey:Phys. Status Solidi, 1968, vol. 29, pp. 357–66.

    Article  CAS  Google Scholar 

  6. M.H. Loretto and R.J. Wasilewski:Phil. Mag., 1971, vol. 23, pp. 1311–28.

    Article  CAS  Google Scholar 

  7. K.H. Hahn and K. Vedula:Scripta Metall, 1989, vol. 23, pp. 7–12.

    Article  CAS  Google Scholar 

  8. A. Ball and R.E. Smallman:Acta Metall, 1966, vol. 14, pp. 1517–26.

    Article  CAS  Google Scholar 

  9. R.J. Wasilewski, S.R. Butler, and J.E. Hanlon:Trans. AIME, 1967, vol. 239, pp. 1357–64.

    CAS  Google Scholar 

  10. C.H. Lloyd and H.M. Loretto:Phys. Status Solidi, 1970, vol. 39, pp. 163–70.

    Article  CAS  Google Scholar 

  11. N.J. Zaluzec and H.L. Fraser:Scripta Metall, 1974, vol. 8, pp. 1049–54.

    Article  CAS  Google Scholar 

  12. I. Baker and E.M. Schulson:Metall Trans. A, 1984, vol. 15A, pp. 1129–36.

    CAS  Google Scholar 

  13. A. Lasalmonie:J. Mater. Sci., 1982, vol. 17, pp. 2419–23.

    Article  Google Scholar 

  14. H.L. Fraser, M.H. Loretto, and R.E. Smallman:Phil. Mag., 1973, vol. 28, pp. 667–77.

    Article  CAS  Google Scholar 

  15. R. von Mises:Z. Agnew Mech., 1928, vol. 8, pp. 161–85.

    Google Scholar 

  16. C.C. Law and M.J. Blackburn: Final Technical Report, AFWAL- TR-87-4102, 1987.

  17. R.R. Bowman, R.D. Noebe, and R. Darolia: in2nd Annual H1TEMP Review, NASA CP-10039, 1989, pp. 47/1–47/15.

  18. E.P. George and C.T. Liu:J. Mater. Res., 1990, vol. 5 (4), pp. 754–62.

    CAS  Google Scholar 

  19. R.D. Noebe, C.L. Cullers, and R.R. Bowman: NASA Lewis Research Center, Cleveland, OH, unpublished research, 1990.

  20. A.J. Bradley and A. Taylor:Proc. R. Soc. A, 1937, vol. 159, pp. 56–72.

    Article  CAS  Google Scholar 

  21. K. Vedula and P.S. Khadkikar: inHigh Temperature Aluminides and Intermetallics, S.H. Whang, C.T. Liu, D.P. Pope, and J.O. Stiegler, eds., TMS, Warrendale, PA, 1989, pp. 197–217.

    Google Scholar 

  22. W. Yang, R.A. Dodd, and P.R. Strutt:Metall Trans., 1972, vol. 3, pp. 2049–54.

    Article  CAS  Google Scholar 

  23. J.W. Christian:Metall Trans. A, 1983, vol. 14A, pp. 1237–56.

    CAS  Google Scholar 

  24. L.P. Kubin:Rev. Def. Beh. Mater., 1982, vol. 4 (3), pp. 181–275.

    CAS  Google Scholar 

  25. G.C. Rybicki and J.L. Smialek:Oxid. Met., 1989, vol. 31 (3–4), pp. 275–303.

    Article  CAS  Google Scholar 

  26. C.A. Barrett:Oxid. Met., 1988, vol. 30, pp. 361–90.

    Article  CAS  Google Scholar 

  27. C.A. Barrett: inOxidation of High Temperature Intermetallics, T. Grobstein and J. Doychak, eds., TMS, Warrendale, PA, pp. 67–82.

  28. J.L. Smialek and R. Browning: NASA TM-87168, 1985.

  29. S.V. Raj, R.D. Noebe, and R.R. Bowman:Scripta Metall, 1989, vol. 23, pp. 2049–54.

    Article  CAS  Google Scholar 

  30. W.A. Swiatnicki, M. Styczynska, and M.W. Grabski:Acta Metall, 1985, vol. 33 (9), pp. 1643–50.

    Article  CAS  Google Scholar 

  31. W.A. Swiatnicki, W. Lojkowski, and M.W. Grabski:Acta Metall, 1986, vol. 34 (4), pp. 599–605.

    Article  CAS  Google Scholar 

  32. W.A. Swiatnicki and M.W. Grabski:Acta Metall, 1986, vol. 34 (5), pp. 817–22.

    Article  CAS  Google Scholar 

  33. W.A. Swiatnicki and M.W. Grabski:Acta Metall, 1987, vol. 39 (5), pp. 1307–11.

    Google Scholar 

  34. J. Kwiecinski and J.W. Wyrzykowski:Acta Metall, 1989, vol. 37 (5), pp. 1503–07.

    Article  CAS  Google Scholar 

  35. M. Zeller, R. Noebe, and I.E. Locci: in3rd Annual HITEMP Review, NASA CP-10051, 1990, pp. 21/1–21/17.

  36. P.S. Khadkikar, G.M. Michal, and K. Vedula:Metall Trans. A, 1990, vol. 21A, pp. 279–88.

    CAS  Google Scholar 

  37. T.C. Tisone, G.W. Marshall, and J.O. Brittain:J. Appl. Phys., 1968, vol. 39 (8), pp. 3714–17.

    Article  CAS  Google Scholar 

  38. G.W. Marshall and J.O. Brittain:Metall Trans. A, 1975, vol. 6A, pp. 921–26.

    CAS  Google Scholar 

  39. I.E. Locci, R.D. Noebe, R.R. Bowman, R. Miner, M.V. Nathal, and R. Darolia: inHigh Temperature Ordered Intermetallic Alloys IV, MRS Symposium Proceedings, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213.

    Google Scholar 

  40. R.D. Noebe, R.R. Bowman, J.T. Kim, M. Larsen, and R. Gibala: inHigh Temperature Aluminides and Intermetallics, S.H. Whang, C.T. Liu, D.P. Pope, and J.O. Stiegler, eds., TMS, Warrendale, PA, 1989, pp. 271–300.

    Google Scholar 

  41. E.P. George, C.T. Liu, and J.J. Liao: inAlloy Phase Stability and Design, MRS Symposium Proceedings, G.M. Stocks, D.P. Pope, and A.F. Giamei, eds., Materials Research Society, Pittsburgh, PA, 1990, vol. 186, pp. 375–80.

    Google Scholar 

  42. E.M. Schulson and D.R. Barker:Scripta Metall, 1983, vol. 17, pp. 519–22.

    Article  CAS  Google Scholar 

  43. S. Ruess and H. Vehoff:Scripta Metall, 1990, vol. 24 (6), pp. 1021–26.

    Article  Google Scholar 

  44. K.S. Chan:Scripta Metall, 1990, vol. 24, pp. 1725–30.

    Article  CAS  Google Scholar 

  45. R.D. Noebe, R.R. Bowman, C.L. Cullers, and S.V. Raj: inHigh Temperature Ordered Intermetallic Alloys IV, MRS Symposium Proceedings, L. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213.

    Google Scholar 

  46. R. Darolia, D.F. Lahrman, R.D. Field, and A.J. Freeman: inHigh Temperature Ordered Intermetallic Alloys III, MRS Symposium Proceedings, C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Koch, eds., Materials Research Society, Pittsburgh, PA, 1989, vol. 133, pp. 113–18.

    Google Scholar 

  47. K. Vedula and R.D. Noebe: NASA Lewis Research Center, Cleveland, OH, unpublished research, 1988.

  48. K. Vedula, K.H. Hahn, and B. Boulogne: inHigh Temperature Ordered Intermetallic Alloys III, MRS Symposium Proceedings, C.T. Liu, A.I. Taub, N.S. Stoloff, and C.C. Koch, eds., Materials Research Society, Pittsburgh, PA, 1989, vol. 133, pp. 299–304.

    Google Scholar 

  49. G.I. Taylor:J. Inst. Met., 1938, vol. 62, pp. 307–12.

    Google Scholar 

  50. J.W. Hutchinson:J. Mech. Phys. Solids, 1964, vol. 12, pp. 25–33.

    Article  Google Scholar 

  51. E.M. Savitskii, G.S. Burkhanov, and I.M. Zalivin:Strength of Materials, 1972, vol. 4, pp. 1406–07.

    Article  Google Scholar 

  52. J.T. Kim: Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 1990.

    Google Scholar 

  53. R.D. Field, D.F. Lahrman, and R. Darolia: General Electric, Evandale, OH, unpublished research, 1990.

  54. D.B. Miracle: Ph.D. Thesis, Ohio State University, Columbus, OH, 1990.

    Google Scholar 

  55. G.W. Groves and A. Kelly:Phil. Mag., 1969, vol. 19, pp. 977–86.

    Article  CAS  Google Scholar 

  56. D.A. Porter and K.E. Easterling:Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Co. Ltd., Berkshire, England, 1981, p. 98.

    Google Scholar 

  57. G.W. Groves and A. Kelly:Phil. Mag., 1963, vol. 8, pp. 877–87.

    Article  CAS  Google Scholar 

  58. R.T. Pascoe and C.W.A. Newey:Met. Sci. J., 1971, vol. 5, pp. 50–55.

    Article  CAS  Google Scholar 

  59. W.J. Yang and R.D. Dodd:Met. Sci. J., 1973, vol. 7, pp. 41–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, R.R., Noebe, R.D., Raj, S.V. et al. Correlation of deformation mechanisms with the tensile and compressive behavior of NiAl and NiAl(Zr) intermetallic alloys. Metall Trans A 23, 1493–1508 (1992). https://doi.org/10.1007/BF02647332

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647332

Keywords

Navigation