Skip to main content
Log in

Evidence of shear ligament toughening in TiAl-base alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Shear ligament toughening is a process by which fracture resistance of a material is enhanced as the result of the redundant deformation and shear fracture of intact ligaments that are formed in the crack wake. A recent micromechanical model has suggested that shear ligament toughening is responsible for the resistance-curve fracture behavior observed in lamellar TiAl-base alloys. In this article, various aspects of the shear ligament-toughening mechanism are evaluated by performing critical experiments. Experimental evidence supporting the presence of shear ligament toughening in TiAl-base alloys is presented together with a quantitative comparison of the proposed model against experimental data. Both the experimental results and model calculations indicate that the resistance-curve fracture behavior in lamellar TiAl-base alloys is indeed a manifestation of shear ligament toughening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Chan:Metall. Trans. A, 1991, vol. 22A, 1991, pp. 2021–29.

    CAS  Google Scholar 

  2. Y.-W. Kim and D.M. Dimiduk:JOM, 1991, Aug., pp. 40–47.

  3. Y.-W. Kim:Materials Research Society Conference Proceedings, Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 777–94.

    Google Scholar 

  4. Y.-W. Kim:Acta Metall. Mater., 1992, vol. 40, pp. 1121–34.

    Article  CAS  Google Scholar 

  5. K.S. Chan and Y.-W. Kim: inMicrostructure/Property Relationships in Titanium Aluminides and Titanium Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS-AIME, Warrendale, PA, 1991, pp. 179–96.

    Google Scholar 

  6. K.S. Chan and Y.-W. Kim:Metall. Trans. A, 1992, vol. 23A, pp. 1663–77.

    CAS  Google Scholar 

  7. D.S. Shih, S.-C. Huang, G.K. Scarr, H. Jang, and J.C. Chesnutt: inMicrostructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS-AIME, Warrendale, PA, 1991, pp. 135–48.

    Google Scholar 

  8. S.L. Kampe, P. Sadler, D.E. Larsen, and L. Christodoulou: inMicrostructure/Property Relationships in Titanium Alloys and Titanium Aluminides, Y.-W. Kim and R.R. Boyer, eds., TMS-AIME, Warrendale, PA, 1991, pp. 313–22.

    Google Scholar 

  9. K.S. Chan:JOM, 1992, vol. 44 (5), pp. 30–38.

    CAS  Google Scholar 

  10. K.S. Chan:Metall. Trans. A, 1993, vol. 24A, pp. 569–83.

    CAS  Google Scholar 

  11. N.J. Rogers and P. Bowen: inStructural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS-AIME, Warrendale, PA, 1993, pp. 231–40.

    Google Scholar 

  12. K.S. Chan and Y.-W. Kim:Metall. Trans. A, 1993, vol. 24A, pp. 113–25.

    CAS  Google Scholar 

  13. H.E. Deve, A.G. Evans, and D.S. Shih:Acta Metall., 1992, vol. 40, pp. 1259–65.

    Article  CAS  Google Scholar 

  14. K.S. Chan and Y.-W. Kim:Acta Metall. Mater., 1995, in press.

  15. K.S. Chan and D.L. Davidson: inStructural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS-AIME, Warrendale, PA, 1993, p. 223.

    Google Scholar 

  16. K.S. Chan and Y.-W. Kim:Metall. Trans. A, 1994, vol. 25A, pp. 1217–28.

    CAS  Google Scholar 

  17. E.O. Hall:Proc. Phys. R. Soc. London B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  18. M.J. Petch:J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  19. A. Nagy, J.B. Campbell, and D.L. Davidson:Rev. Sci. Instrum., 1984, vol. 55, pp. 778–82.

    Article  Google Scholar 

  20. E.A. Franke, D.J. Wenzel, and D.L. Davidson:Rev. Sci. Instrum., 1990, vol. 62 (5), pp. 1270–79.

    Article  Google Scholar 

  21. J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  22. J.R. Rice and G.R. Rosengren:J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–13.

    Article  Google Scholar 

  23. H. Tada, P. Paris, and G.R. Irwin:The Stress Analysis of Cracks Handbooks, Del Research Corp., Hellertown, PA, 1976, pp. 3–6.

    Google Scholar 

  24. R.O. Ritchie and R.M. Cannon: Report No. LBL-20656, Lawrence Berkeley Laboratory, University of California, Berkeley, CA, 1985.

    Google Scholar 

  25. Y.-W. Kim:JOM, 1994, vol. 46 (7), pp. 30–40.

    CAS  Google Scholar 

  26. Y.-W. Kim: Paper presented at the GKSS International Workshop ony Titanium Aluminides, Kloster Irsee, Germany, May 2-6, 1994.

    Google Scholar 

  27. H.E. Deve, A.G. Evans, G.R. Odette, R. Mehrabian, M.L. Emiliani, and R.J. Hecht:Acta Metall. Mater., 1990, vol. 38, pp. 1491–1502.

    Article  CAS  Google Scholar 

  28. K.T. Venkateswara Rao, G.R. Odette, and R.O. Ritchie: inFatigue of Advanced Materials, R.O. Ritchie, R.H. Dauskardt, and B.N. Cox, eds., MCEP, Birmingham, United Kingdom, 1991, pp. 429–36.

    Google Scholar 

  29. C.K. Elliott, G.R. Odette, G.E. Lucas, and J.W. Sheckard:Materials Research Society Conference Proceedings, Materials Research Society, Pittsburgh, PA, 1988, vol. 120, pp. 95–101.

    Google Scholar 

  30. M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk:Metall. Trans. A, 1991, vol. 22A, pp. 1573–83.

    CAS  Google Scholar 

  31. M. Bannister and M.F. Ashby:Acta Metall. Mater., 1991, vol. 39, pp. 2572–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S. Evidence of shear ligament toughening in TiAl-base alloys. Metall Mater Trans A 26, 1407–1418 (1995). https://doi.org/10.1007/BF02647591

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647591

Keywords

Navigation