Skip to main content
Log in

The deformation mechanisms of superplasticity

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Under various conditions of stress and temperature various deformation mechanisms could be rate-controlling for superplastic deformation. In general at low stresses diffusion creep should be rate-controlling. At temperatures between approximately 40 and 65 pct of the absolute melting point grain boundary diffusion should be the dominant diffusion path while at higher temperatures volume diffusion should dominate. At intermediate stresses, grain boundary sliding should be the major deformation mode, but the sliding rate should be governed by the lesser rate of dislocation creep within the grains. At temperatures between 40 and 65 pct of the melting point, the rate of dislocation creep should be controlled by dislocation pipe diffusion, while at higher temperatures volume diffusion should be ratecontrolling. At high stresses the superplastic effect of unusually large tensile extensibility should diminish due to the greater possibility of work-hardening processes such as dislocation cell, tangle, and pile-up formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Pearson:J. Inst, Metals, 1934, vol. 54, p. 111.

    Google Scholar 

  2. D. H. Avery and W. A. Backofen:Trans. ASM, 1965, vol. 58, p. 551.

    Google Scholar 

  3. H. E. Cline and T. H. Alden:Trans. TMS-AIME, 1967, vol. 239, p. 710.

    Google Scholar 

  4. S. W. Zehr and W. A. Backofen:Trans. ASM, 1968, vol. 61, p. 300.

    Google Scholar 

  5. T. H. Alden:Trans. ASM, 1968, vol. 61, p. 559.

    Google Scholar 

  6. T. H. Alden:Ada Met., 1967, vol. 15, p. 469.

    Article  Google Scholar 

  7. A. A. Bochvar and Z. A. Sviderskaia:Izv. Akad. Nauk, SSSR, Otd. Tekh. Nauk, 1945, vol. 9, p. 821.

    Google Scholar 

  8. W. A. Backofen, I. R. Turner, and D. H. Avery:Trans. ASM, 1964, vol. 57, p. 980.

    Google Scholar 

  9. C. M. Packer and O. D. Sherby:Trans. ASM, 1967, vol. 60, p. 21.

    Google Scholar 

  10. A. Ball and M. Hutchison:Metal Sci. J., 1969, vol. 3, p. 1.

    Article  Google Scholar 

  11. D. L. Holt and W. A. Backofen:Trans. ASM, 1966, vol. 59, p. 755.

    Google Scholar 

  12. D. Lee:ActaMet., 1969, vol. 17, p. 1057.

    Google Scholar 

  13. R. C. Gibson, H. W. Hayden, and J. H. Brophy:Trans. ASM, 1968, vol. 61, p. 85.

    Google Scholar 

  14. W. B. Morrison:Trans. ASM, 1968, vol. 61, p. 423.

    Google Scholar 

  15. H. W. Hayden, R. C. Gibson, H. F. Merrick, and J. H. Brophy:Trans. ASM, 1967, vol. 60, p. 3.

    Google Scholar 

  16. H. W. Hayden and J. H. Brophy:Trans. ASM, 1968, vol. 61, p. 542.

    Google Scholar 

  17. D. Lee and W. A. Backofen:Trans. TMS-AIME, 1967, vol. 239, p. 1034.

    Google Scholar 

  18. E. W. Hurt:Acta Met., 1967, vol. 15, p. 1545.

    Article  Google Scholar 

  19. R. C. Gifkins:J. Inst. Metals, 1967, vol. 95, p. 373.

    Google Scholar 

  20. T. H. Alden:J. Aust. Inst. Metals, 1969, vol. 14, p. 207.

    Google Scholar 

  21. T. H. Alden:ActaMet., 1969, vol. 17, p. 1434.

    Google Scholar 

  22. P. Chaudhari:Acta Met., 1967, vol. 15, p. 1777.

    Article  Google Scholar 

  23. F. R. N. Nabarro:Proc. Conf. on Strength of Solids, p. 75, Phys. Soc. of London, Cambridge, 1948.

    Google Scholar 

  24. C. Herring:J. Appl. Phys., 1950, vol. 21, p. 437.

    Article  Google Scholar 

  25. R. L. Coble:J. Appl. Phys., 1963, vol. 34, p. 1679.

    Article  Google Scholar 

  26. I. M. Lifshitz:Sov. Phys. JETP, 1963, vol. 17, p. 909.

    Google Scholar 

  27. O. D. Sherby and P. M. Burke:Progr. Mater. Sci., 1967, vol. 13, p. 325.

    Google Scholar 

  28. R. Raj and M. F. Ashby:Met. Trans., 1971, vol. 2, p. 1113.

    Article  Google Scholar 

  29. R. N. Stevens:Met. Rev., 1966, vol. 11, p. 129.

    Article  Google Scholar 

  30. D. McLean and R. C. Gifkins:J. Inst. Metals, 1960–61, vol. 89, p. 2.

    Google Scholar 

  31. T. S. Kê-.Phys. Rev., 1948, vol. 73, p. 267, andJ. Appl. Phys., 1949, vol. 20, p. 274.

    Article  Google Scholar 

  32. J. Friedel:Dislocations, Addison Wesley, Cambridge, Mass., 1964.

    Google Scholar 

  33. J. Friedel:Phil. Mag., 1955, vol. 46, p. 1169.

    Article  Google Scholar 

  34. R. J. Iindinger, R. C. Gibson, and J. H. Brophy:Trans. ASM, 1969, vol. 62, p. 230.

    Google Scholar 

  35. J. Weertman:J. Appl. Phys., 1955, vol. 26, p. 1213.

    Article  Google Scholar 

  36. D. McLean:Trans. TMS-AIME, 1968, vol. 242, p. 1193.

    Google Scholar 

  37. D. Turnbull and R. E. Hoffman:ActaMet., 1954, vol. 2, p. 419.

    Google Scholar 

  38. C. J. Smithells:Metals Reference Book, Third Edition, p. 593, Butterworths, Washington, 1962.

    Google Scholar 

  39. R. F. Canon and J. P. Stark:J. Appl. Phys., 1969, vol. 40, p. 4366.

    Article  Google Scholar 

  40. M. Wuttig and H. K. Birnbaum:Phys. Rev., 1966, vol. 147, p. 495.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, H.W., Floreen, S. & Goodell, P.D. The deformation mechanisms of superplasticity. Metall Trans 3, 833–842 (1972). https://doi.org/10.1007/BF02647657

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647657

Keywords

Navigation