Skip to main content
Log in

Structure and properties of rapidly solidified dispersion-strengthened titanium alloys: Part I. Characterization of dispersoid distribution, structure, and chemistry

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The feasibility of developing dispersion-strengthened powder metallurgy Ti alloys was determined in Ti-RE (RE = Ce, Dy, Er, Gd, La, Nd, or Y) alloys prepared by rapid solidification processing. The alloys were produced by electron-beam melting and splat quenching. Dispersoid precipitation and growth were studied as functions of annealing temperature, 700 to 1000 °C, for annealing times between 5 and 50,000 minutes. Dispersoid diameters, spacings, compositions, and crystal structures were characterized by transmission and scanning electron microscopy, X-ray and electron diffraction, energy-dispersive X-ray analysis, and scanning Auger microscopy. Two classes of dispersoid coarsening behavior at temperatures below theβ-transus were identified. In Ti-Ce, Ti-Gd, and Ti-Nd alloys, equilibrium rare earth sesquioxide (RE2O3) dispersoids form early in the annealing process and coarsen rapidly to > 1 μm diameter. The Ti-Nd alloys additionally contain large volume fractions of small (< 100 nm diameter) dispersoids. In the other Ti-RE alloys, dispersoids identified as Ti-RE-O-C compounds coarsen relatively slowly. Ti-Er is the most promising of the investigated systems for application in a multicomponent dispersion-strengthened alloy because long-time annealing at 700 to 800 °C produces stable dispersoids of 50 to 150 nm average diameter and 300 to 600 nm inter-particle spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. R. Morral: Battelle Columbus Laboratories, Columbus, OH, MCIC Report, MCIC-77-30, 1977.

  2. C. F. Dixon and H. M. Skelly:Canadian Met. Quart., 1972, vol. 11, p. 491.

    CAS  Google Scholar 

  3. J.E. O’Neal, T. C. Peng, and S.M.L. Sastry: inProc. Electron Microscopy Soc. Amer., G. W. Bailey, ed., Claitor’s Publ. Div., Baton Rouge, LA, 1981, p. 66.

    Google Scholar 

  4. S.M.L. Sastry, J.E. O’Neal, R.J. Lederich, and B.B. Rath:J. Mater. Sci., 1979, vol. 14, pp. 79–83.

    Article  Google Scholar 

  5. J.C. Williams:Precipitation Processes in Solids, K.C. Russell and H.I. Aaronson, eds., TMS-AIME, Warrendale, PA, 1978, p. 191.

    Google Scholar 

  6. M. J. Buczek, G. S. Hall, S. R. Seagle, and H. B. Bomberger: AFML-TR-74-2557, 1974.

  7. T.K. Redden and CE. Shamblen: AFML-TR-70-168, September 1970.

  8. P. A. Russo, S. R. Seagle, and H. B. Bomberger: AFML-TR-70-125, July 1970.

  9. R.H. Hltz Jr., and N.J. Grant:Trans. TMS-AIME, 1958, vol. 212, p. 383.

    Google Scholar 

  10. T. C. Peng, J. E. O’Neal, and S.M.L. Sastry: inLasers in Metallurgy, K. Mukherjee and J. Mazumder, eds., TMS-AIME, Warrendale, PA, p. 279.

  11. S.M.L. Sastry, T. C. Peng, P. J. Meschter, and J. E. O’Neal:Journal of Metals, September 1983, vol. 35, p. 21.

    CAS  Google Scholar 

  12. T. C. Peng, S.M.L. Sastry, and J. E. O’Neal: inRapid Solidification Processing Principles and Technologies, R. Mehrabian, ed., National Bureau of Standards, Gaithersburg, MD, 1983, p. 452.

    Google Scholar 

  13. S. M. L. Sastry, T. C. Peng, J. E. O’Neal, and L. P. Beckerman:ibid., p. 579.

  14. M. Hansen:Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1958, pp. 463, 893.

    Google Scholar 

  15. R. P. Elliott:Constitution of Binary Alloys, 1st Supplement, McGraw-Hill, New York, NY, 1965, pp. 311, 398, 406, 472, 578, 657, and 853.

    Google Scholar 

  16. F. A. Shunk:Constitution of Binary Alloys, 2nd Supplement, McGraw-Hill, New York, NY, 1965, pp. 249, 309, 319, 477, 547, and 703.

    Google Scholar 

  17. B.B. Rath, R.J. Lederich, and J. E. O’Neal: inGrain Boundaries in Engineering Materials,J. L. Walter, J. H. Westbrook, and D. A. Woodford, eds., Claitor’s Publishing Division, Baton Rouge, LA, 1975, p. 39.

    Google Scholar 

  18. J. E. O’Neal, S. M. L. Sastry, and R. J. Lederich: inMicrostructural Science, P. A. Fallon and J. L. McCall, eds., Elsevier, New York, NY, 1979, p. 159.

    Google Scholar 

  19. K. K. Sankaran, S. M. L. Sastry, and J. E. O’Neal:Metall. Trans. A, 1980, vol. 11A, p. 198.

    Google Scholar 

  20. K. A. Gschneidner, Jr., N. Kippenhan, and O. D. McMasters: unpublished research, Rare-Earth Information Center, Iowa State University, Ames, IA, 1973.

  21. K.L. Komarek and M. Silver: inThermodynamics of Nuclear Materials, I. A. E. A., Vienna, 1962, p. 769.

    Google Scholar 

  22. S. M. L. Sastry, T. C. Peng, and L. P. Beckerman:Metall. Trans. A, 1984, vol. 15A, p. 1465.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, S.M.L., Meschter, P.J. & O’neal, J.E. Structure and properties of rapidly solidified dispersion-strengthened titanium alloys: Part I. Characterization of dispersoid distribution, structure, and chemistry. Metall Trans A 15, 1451–1463 (1984). https://doi.org/10.1007/BF02648575

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648575

Keywords

Navigation