Skip to main content
Log in

Morphological instabilities of lamellar eutectics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We present the results of a numerical study based on the boundary integral technique of interfacial pattern formation in directional solidification of thin-film lamellar eutectics at low velocity. Microstructure selection maps that identify the stability domains of various steady-state and nonsteady-state growth morphologies in the spacing-composition (λ –C 0) plane are constructed for the transparent organic alloy CBr4-C2Cl6 and for a model eutectic alloy with two solid phases of identical physical properties. In CBr4-C2Cl6, the basic set of instabilities that limit steady-state growth is richer than expected. It consists of three primary instabilities, two of which are oscillatory, which bound the domain of the commonly observed axisymmetric lamellar morphology, and two secondary oscillatory instabilities, which bound the domain of the nonaxisymmetric (tilted) lamellar morphology. The latter is predicted to occur over a hypereutectic range of composition which coincides well with experiment. Moreover, the steady tilt bifurcation lies between but does not directly bound either of these two domains, which are consequentlydisjoint. Four stable oscillatory microstructures, at least three of which have been seen experimentally, are predicted to occur in unstable regimes. In the model alloy, the structure is qualitatively similar, except that a stable domain of tilted steady-state growth is not found, in agreement with previous random-walk simulations. Furthermore, the composition range of stability of the axisymmetric morphology decreases sharply with increasing spacing away from minimum undercooling but extends further off-eutectic than predicted by the competitive growth criterion. In addition, oscillations with a wavelength equal to two λ lead to lamella termination at a small distance above the onset of instability. The implications of these two features for the eutectic to dendrite transition are examined with the conclusion that in the absence of heterogeneous nucleation, this transition should be histeritic at small velocity and temperature gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Brandt:J. Appl. Phys., 1945, vol. 16, p. 139.

    Article  CAS  Google Scholar 

  2. C. Zener:Trans. TMS-AIME, 1946, vol. 167, p. 550.

    Google Scholar 

  3. W.A. Tiller:Liquid Metals and Solidification, ASM, Cleveland, OH, 1958, p. 276.

    Google Scholar 

  4. M. Hillert:Jernkontorets Ann., 1957, vol. 141, p. 773.

    Google Scholar 

  5. K.A. Jackson and J.D. Hunt:Trans. TMS-AIME, 1966, vol. 236, p. 1129.

    CAS  Google Scholar 

  6. F.R. Mollard and M.C. Flemings:Trans. TMS-AIME, 1967, vol. 239, p. 1534.

    CAS  Google Scholar 

  7. H.E. Cline:Trans. TMS-AIME, 1968, vol. 242, p. 1613.

    CAS  Google Scholar 

  8. W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1963, vol. 34, p. 323.

    Article  CAS  Google Scholar 

  9. D.T.J. Hurle and E. Jakeman:J. Cryst. Growth, 1968, vol. 3(4), p. 574.

    Article  Google Scholar 

  10. J.D. Hunt, D.T.J. Hurle, K.A. Jackson, and E.J. Jakeman:Trans. AIME, 1970, vol. 1, p. 381.

    Google Scholar 

  11. S. Strassler and W.R. Schneider:Phys. Cond. Matter, 1974, vol. 17, p. 153.

    Article  Google Scholar 

  12. H.E. Cline:J. Appl. Phys., 1979, vol. 50, p. 4780.

    Article  CAS  Google Scholar 

  13. V. Datye and J.S. Langer:Phys. Rev., 1981, vol. B24, p. 4155; J.S. Langer:Phys. Rev. Lett., 1980, vol. 44, p. 1023.

    Google Scholar 

  14. This assumption is often credited to Cahn (unpublished) who argued on its basis that spacings smaller than λm should be unstable.

  15. An analysis by B. Caroli, C. Caroli, and B. Roulet(J. Phys. (France), 1990, vol. 51, p. 1865) has indicated that the critical spacing for this instability should not be expected to coincide with λm in the limit of large thermal gradient. It is not presently (rigorously) known by how much the two spacings differ in the experimentally relevant range of growth conditions where this gradient is much weaker than assumed in their analysis.

  16. M. Zimmermann, A. Karma, and M. Carrard:Phys. Rev., 1990, vol. B42, p. 833.

    Google Scholar 

  17. S.C. Gill and W. Kurz:Acta Metall. Mater., 1993, vol. 41, p. 3563.

    Article  CAS  Google Scholar 

  18. B. Caroli, C. Caroli, G. Faivre, and J. Mergy:J. Cryst. Growth, 1992, vol. 118, p. 135.

    Article  CAS  Google Scholar 

  19. J. Mergy: Ph.D. Thesis, Université Paris 7, Paris, 1992; also J. Mergy, G. Faivre, C. Guthmann, and R. Mellet:J. Cryst. Growth, 1993, vol. 134, p. 353.

    Article  Google Scholar 

  20. A. Karma:Phys. Rev. Lett., 1987, vol. 59, p. 71.

    Article  CAS  Google Scholar 

  21. A. Karma: inSolidification Processing of Eutectic Alloys, D.M. Stefanescu, G.J. Abbaschian, and R.J. Bayuzick, eds., TMS, Cincinnati, OH, 1988, p. 35; alsoPrinciples of Solidification and Materials Processing, R. Trivedi, J.A. Sekhar, and J. Mazumdar, eds., Oxford, New Delhi, Bombay, and IBH Publishing Co., Calcutta, India, 1989, vol. 1, p. 243.

    Google Scholar 

  22. K. Kassner and C. Misbah:Phys. Rev., 1991, vol. A44, p. 6533.

    Google Scholar 

  23. B. Caroli, C. Caroli, and S. Fauve:J. Phys. I (France), 1992, vol. 2, p. 281.

    Article  Google Scholar 

  24. C. Misbah and D.E. Temkin:Phys. Rev., 1992, vol. A46, p. R4497.

    Google Scholar 

  25. A. Valence, C. Misbah, D. Temkin, and K. Kassner:Phys. Rev., 1993, vol. E48, p. 1924.

    Google Scholar 

  26. G. Faivre, S. De Cheveigne, C. Guthman, and P. Kurowski:Europhys. Lett., 1989, vol. 9, p. 779.

    Google Scholar 

  27. G. Faivre and J. Mergy:Phys. Rev., 1992, vol. A45, p. 7320;Phys. Rev., 1992, vol. A46, p. 963.

    Google Scholar 

  28. R.-F. Xiao, J.I.D. Alexander, and F. Rosenberger:Phys. Rev., 1992, vol. A45, p. R571;Mater. Sci. Eng., 1994, vol. A178, p. 233.

    Google Scholar 

  29. B.A. Wolfe Diesslin and W.T. Grayhack:Phys. Rev., 1994, vol. B50, p. 9111.

    Google Scholar 

  30. For a review of this approach with reference to the earlier literature, see W. Kurz and D.J. Fisher:Int. Met. Rev., 1979, vol. 177; also R. Trivedi and W. Kurz: inSolidification Processing of Eutectic Alloys, D.M. Stefanescu, G.J. Abbaschian, and R.J. Bayuzick, eds., TMS, Cincinnati, OH, 1988, pp. 3–34.

  31. G.E. Nash:J. Cryst. Growth, 1977, vol. 38, p. 155.

    Article  CAS  Google Scholar 

  32. D.A. Kessler and H. Levine:J. Cryst. Growth, 1989, vol. 94, p. 871.

    Article  CAS  Google Scholar 

  33. K. Kassner and C. Misbah:Phys. Rev., 1991, vol. A44, p. 6513.

    Google Scholar 

  34. A. Karma:Phys. Rev., 1994, vol. E49, p. 2245.

    Google Scholar 

  35. A.A. Wheeler, G.B. McFadden, and W.J. Boettinger: National Institute of Technology, Gaithersburg, MD 20899,Proceedings of the Royal Society of London, 1994.

    Google Scholar 

  36. K.R. Elder, F. Drolet, J.M. Kosterlitz, and M. Grant:Phys. Rev. Lett, 1994, vol. 72, p. 677.

    Article  CAS  Google Scholar 

  37. A. Sarkissian: Ph.D. Thesis, Northeastern University, Boston, MA, 1994.

  38. J.D. Hunt and K.A. Jackson:Trans. TMS-AIME, 1966, vol. 236, p. 843.

    CAS  Google Scholar 

  39. W.F. Kaukler and J. Rutter:Mater. Sci. Eng., 1984, vol. 65, p. LI.

    Google Scholar 

  40. V. Seetharaman and R. Trivedi:Metall. Trans. A, 1988, vol. 19A, pp. 2955–64.

    CAS  Google Scholar 

  41. C. Caroli and G. Faivre:Solid State Communications, in press.

  42. A. Karma:Phys. Rev., 1986, vol. A34, p. 4353.

    Google Scholar 

  43. M. Ginibre: Ph.D. Thesis, Université Paris 7, Paris, in preparation.

  44. J.D. Verhoeven and E.D. Gibson:Metall Trans., 1972, vol. 3, pp. 1893–98.

    Article  CAS  Google Scholar 

  45. J.D. Verhoeven and E.D. Gibson:Metall. Trans., 1973, vol. 4, pp. 2581–90.

    CAS  Google Scholar 

  46. K.A. Jackson:Trans. TMS-AIME, 1968, vol. 242, p. 1275.

    CAS  Google Scholar 

  47. G. Faivre and M. Ginibre: Groupe de Physique des Solides, Université Paris VII, Paris, private communication, 1994.

  48. T.F. Bower, H.D. Brody, and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, p. 624.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the “Analysis and Modeling of Solidification” symposium as part of the 1994 Fall meeting of TMS in Rosemont, Illinois, October 2–6, 1994, under the auspices of the TMS Solidification Committee.

Formerly Postgraduate Student, Physics Department, Northeastern University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karma, A., Sarkissian, A. Morphological instabilities of lamellar eutectics. Metall Mater Trans A 27, 635–656 (1996). https://doi.org/10.1007/BF02648952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648952

Keywords

Navigation