Skip to main content
Log in

Mechanisms of high-temperature fatigue failure in alloy 800H

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The damage mechanisms influencing the axial strain-controlled low-cycle fatigue (LCF) behavior of alloy 800H at 850 °C have been evaluated under conditions of equal tension/compression ramp rates (fast-fast (F-F): 4 × 10−3 s−1 and slow-slow (S-S): 4 × 10−5 s−1) and asymmetrical ramp rates (fast-slow (F-S): 4 × 10−3 s−1 / 4 × 10−5 s−1 and slow-fast (S-F): 4 × 10−5 / 4 × 10−3 s−1) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F > S-S > F-S > S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bressers, U. Schusser, W. Weise, R. De Cat, and E. Fenske: Cost 501 Final Report, EUR 11693 EN (1988), Commission of the European Communities, 1988, pp. 1-56.

  2. K. Bhanu Sankara Rao, H. Schiffers, H. Schuster, and H. Nickel:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 255–68.

    CAS  Google Scholar 

  3. J. Bressers, U. Schusser, and B. Ilschener: inLow Cycle Fatigue and Elasto-Plastic Behavior of Materials, K.T. Rie, ed., Elsevier Applied Science, London, 1987, pp. 365–70.

    Google Scholar 

  4. J. Barbehon, A. Rahmel, and M. Schutze: inLow Cycle Fatigue and Elasto-Plastic Behavior of Materials, K.T. Rie, ed., Elsevier Applied Science, London, 1987, pp. 371–77.

    Google Scholar 

  5. B.A. Lerch, B. Kempf, D. Steiner, and V. Gerold:Proc. 7th Int. Conf. on the Strength of Metals and Alloys, Montreal, H.J. McQueen, J.-P. Bailon, J.I. Dixon, J.J. Jonas, and M.G. Akbon, ed. Pergamon Press, Oxford, 1986, pp. 1299–1304.

    Google Scholar 

  6. B. Kempf, K. Bothe, and V. Gerold: Paper presented at6th Eur. Conf. on Fracture, Amsterdam, 1986.

  7. K. Bothe, B. Kempf, and V. Gerold: inHigh Temperature Alloys for Gas Turbines and other Applications, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.B. Gibbons, I. Kvernes, Y. Lindblom, J.B. Marriott, and D.B. Meadowcroft, eds., D. Reidel Publishing Company, Dordrecht, 1986, pp. 1517–26.

    Google Scholar 

  8. B. Kempf, K. Bothe, and V. Gerold:Z. Metallkd., 1986, vol. 77, pp. 576–81.

    CAS  Google Scholar 

  9. J. Bressers, W. Weise, and T. Hollstein: inLow Cycle Fatigue and Elasto-Plastic Behavior of Materials, K.T. Rie, ed., Elsevier Applied Science, London, 1987, pp. 655–60.

    Google Scholar 

  10. K.Y. Hour and J.F. Stubbins:Metall. Trans. A, 1989, vol. 20A, pp. 1727–34.

    CAS  Google Scholar 

  11. B. Kempf, K. Bothe, and V. Gerold: inLow Cycle Fatigue and Elasto- Plastic Behavior of Materials, K.T. Rie, ed., Elsevier Applied Science, London, 1987, pp. 271–76.

    Google Scholar 

  12. P. Agatonovic and N. Taylor: inProc. 6th Int. Conf. on Mechanical Behavior of Materials—VI, Kyoto, Japan, M. Jono and T. Inoue, eds., Pergamon Press, Oxford, 1992, pp. 303–10.

    Google Scholar 

  13. G.R. Haiford, M.H. Hirschberg, and S.S. Manson:Temperature Effect on the Strainrange Partitioning Approach for Creep-Fatigue Analysis, ASTM STP 520, ASTM, Philadelphia, PA, 1973, pp. 658–69.

    Google Scholar 

  14. S.S. Manson:The Challenge to Unify Treatment of High Temperature Fatigue—A Partisan Approach Based on Strain Range Partitioning, ASTM STP 520, ASTM, Philadelphia, PA, 1973, pp. 744–82.

    Google Scholar 

  15. S.S. Manson, G.R. Halford, and A.J. Nachtigall:Advances in Design for Elevated Temperature Environment, ASME, Fairfield, NJ, 1975, pp. 17–28.

    Google Scholar 

  16. H.P. Meurer, G.H.K. Gnirss, W. Mergler, G. Raule, H. Schuster, and G. Ulrich:Nucl. Technol, 1984, vol. 66, pp. 315–23.

    CAS  Google Scholar 

  17. L.F. Coffin, Jr.:Metall. Trans., 1974, vol. 5, pp. 1053–64.

    Article  CAS  Google Scholar 

  18. K. Bhanu Sankara Rao, M. Valsan, R. Sandhya, S.L. Mannan, and P. Rodriguez:Trans. Ind. Inst. Met., 1991, vol. 44, pp. 255–71.

    CAS  Google Scholar 

  19. K. Bhanu Sankara Rao, M. Valsan, R. Sandhya, S.L. Mannan, and P. Rodriguez:High Temp. Mater. Processes, 1986, vol. 7, pp. 171–78.

    CAS  Google Scholar 

  20. M. Valsan, K. Bhanu Sankara Rao, D.H. Shastry, and S.L. Mannan:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 159–71.

    Article  CAS  Google Scholar 

  21. J. Bressers, L. Remy, and W. Hoffelner:Proc. Conf. High Temperature Alloys for Gas Turbines and Other Applications, Leigh, Oct. 6–9, 1986, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.B. Gibbons, I. Kvernes, Y. Lindblom, J.B. Marriott, and D.B. Meadowcroft, eds., D. Riedel Publishing Company, Dordrecht, 1986, p. 441.

    Google Scholar 

  22. D. Sidey and L.F. Coffin, Jr.:Low Cycle Fatigue Damage Mechanisms at High Temperature, ASTM STP 675, ASTM, Philadelphia, PA, 1979, pp. 528–68.

    Google Scholar 

  23. B.K. Min and R. Raj:A Mechanism of Intergranular Fracture during High Temperature Fatigue, ASTM STP 675, ASTM, Philadelphia, PA, 1979, pp. 569–91.

    Google Scholar 

  24. S.S. Manson and G.R. Halford:Isr. J. Technol., 1993, vol. 21, pp. 29–53.

    Google Scholar 

  25. G.R. Halford and A.J. Nachtigall:J. Aircraft, 1980, vol. 17, pp. 598–604.

    Article  Google Scholar 

  26. D.C. Lord and L.F. Coffin, Jr.:Metall Trans., 1973, vol. 4, pp. 1647–53.

    CAS  Google Scholar 

  27. M. Okazami, I. Hotari, and T. Koizumi:Metall. Trans. A., 1984, vol. 15A, pp. 1731–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly USA National Research Council Associate, NASA-Lewis Research Center

This article is based on a presentation made at the “High Temperature Fracture Mechanisms in Advanced Materials” symposium as a part of the 1994 Fall meeting of T.S., October 2-6, 1994, in Rosemont, Illinois, under the auspices of the ASM/SMD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, K.B.S., Schuster, H. & Halford, G.R. Mechanisms of high-temperature fatigue failure in alloy 800H. Metall Mater Trans A 27, 851–861 (1996). https://doi.org/10.1007/BF02649752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649752

Keywords

Navigation