Skip to main content
Log in

The breakdown of single-crystal solidification in high refractory nickel-base alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The breakdown of single-crystal solidification has been studied over a wide range of solidification conditions in ten superalloys with large variations in Re, Ta, and W content. Over the range of experimental conditions investigated, grain defect formation was sensitive to local thermaland solutal conditions. For a fixed alloy composition and withdrawal rate, the transition from single-crystal to equiaxed solidification did not occur abruptly. Instead, as thermal gradients were decreased in a series of experiments, isolated, highly misoriented columnar grains with the same composition as that of the base alloy developed in the presence of positive (stabilizing) thermal gradients with increasing frequency until the advance of the single-crystal front was completely blocked. The onset of columnar grain formation occurred when the primary dendrite arm spacing exceeded a critical value, corresponding to a morphological transition in the dendritic array. The onset of “freckling” was observed at the same primary dendrite arm spacing where misoriented columnar grains began to appear. In experiments with varying levels of refractory alloy content, there was also a strong correlation between the onset of grain formation and freckle formation. These observations strongly suggest that in high refractory content superalloys, the breakdown of single-crystal solidification and the formation of misoriented grains as well as freckle-type defects are sensitively dependent on thermosolutal convection processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chalmers:J. Aust. Inst. Metall., 1963, vol. 8, pp. 255–61.

    Google Scholar 

  2. W.C. Winegard and B. Chalmers:Trans. ASM, 1954, vol. 46, pp. 1214–22.

    Google Scholar 

  3. J.D. Hunt:Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  CAS  Google Scholar 

  4. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward:Trans. AIME, 1966, vol. 236, pp. 149–58.

    CAS  Google Scholar 

  5. C.Y. Wang and C. Beckermann:Metall. Trans. A, 1994, vol. 25A, pp. 1081–93.

    Article  CAS  Google Scholar 

  6. Ch.-A. Gandin and M. Rappaz:Acta Metall. Mater., 1994, vol. 42, pp. 2233–46.

    Article  CAS  Google Scholar 

  7. S.M. Copley, A.F. Giamei, S.M. Johnson, and M.F. Hombecker:Metall. Trans., 1970, vol. 1, pp. 2193–2204.

    Article  CAS  Google Scholar 

  8. A.F. Giamei and B.H. Kear:Metall. Trans., 1970, vol. 1, pp. 2185- 92.

    Article  CAS  Google Scholar 

  9. J.R. Sarazin and A. Hellawell:Metall. Trans. A, 1988, vol. 19A, pp. 1861–71.

    CAS  Google Scholar 

  10. T.M. Pollock, W.H. Murphy, E.H. Goldman, D.L. Uram, and J.S. Tu: inSuperalloys 1992, S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. KJarstrom, eds., TMS, Warrendale, PA, 1992, pp. 125–34.

    Google Scholar 

  11. T.M. Pollock and A.S. Argon:Acta Metall. Mater., 1992, vol. 40, pp. 1–30.

    Article  CAS  Google Scholar 

  12. T.M. Pollock:Mater. Sci. Eng., 1995, vol. B32, pp. 255–66.

    Article  CAS  Google Scholar 

  13. W. Kurz and D.J. Fisher:Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  14. J.D. Hunt:Solidification and Casting of Metals, Metals Society, London, 1979.

    Google Scholar 

  15. P.N. Quested and M. McLean:Mater. Sd. Eng., 1984, vol. 65, pp. 171–80.

    Article  CAS  Google Scholar 

  16. G.K. Bouse and J.R. Mihalisin: inSuperalloys, Supercomposites and Superceramics, J.K. Tien and T. Caulfield, eds., Academic Press, Boston, MA, 1988, pp. 99–148.

    Google Scholar 

  17. N. Streat and F. Weinberg:Metall. Trans., 1974, vol. 5, pp. 2539–48.

    Article  CAS  Google Scholar 

  18. W.A. Tiller:The Science of Crystallization, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  19. S.R. Cornell, M.R. Cordes, W.J. Boettinger, and R.F. Sekerka:J. Cryst. Growth, 1980, vol. 49, pp. 13–28.

    Article  Google Scholar 

  20. S.N. Tewari, M. Vijaya Kumar, J.E. Lee, and P.A. Curreri: NASA TM-103518, 1990.

  21. C.W. Horton and F.T. Rogers:J. Appl. Phys., 1945, vol. 16, pp. 367- 70.

    Article  Google Scholar 

  22. K.A. Wooding:Proc. R. Soc. London, 1959, vol. A252, pp. 120–34.

    Google Scholar 

  23. K.O. Yu, J.A. Oti, M. Robinson, and R.G. Carlson: inSuperalloys 1992, S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, Warrendale, PA, 1992, pp. 135–44.

    Google Scholar 

  24. J.S. Tu and R.K. Foran:JOM, 1992, vol. 44, pp. 26–29.

    CAS  Google Scholar 

  25. R.B. Mahapatra and F. Weinberg:Metall. Trans. B, 1987, vol. 18B, pp. 425–32.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollock, T.M., Murphy, W.H. The breakdown of single-crystal solidification in high refractory nickel-base alloys. Metall Mater Trans A 27, 1081–1094 (1996). https://doi.org/10.1007/BF02649777

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649777

Keywords

Navigation