Skip to main content
Log in

Void formation, void growth and tensile fracture in Ti-6AI-4V

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of microstructure on void formation, void growth and tensile fracture was investigated for the Ti-6A1-4V alloy, aged to yield strengths of approximately 110 ksi (758 MN/m2), 130 ksi (896 MN/m2) and 140 ksi (965 MN/m2). Void nucleation occurs at α-aged martensite interfaces for both equiaxed (E) and Widmanstätten plus grain boundary (W + GB)α structures as well as within α particles. Void growth appeared to depend on martensite plate lengths for a given aging treatment for Ea structures, whereas it depended on prior β grain size and grain boundary α thickness for W + GBα structures. Two separate critical crack size-fracture stress (corrected for necking) relationships were found for E and W + GBα structures. The fracture energy for both structures was lower than the corresponding fracture energy previously observed for the Ti-5.25Al-5.5V-0.9Fe-0.5Cu(Ti-5-5) alloy,2 and the lower ductilities of aged Ti-6A1-4V were ascribed to this lower fracture energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.C. Holden, H. R. Ogden, and R. I. Jaffee:Trans. AIME, 1954, vol. 200, p. 169.

    Google Scholar 

  2. M. A. Greenfield and H. Margolin:Met. Trans., 1972, vol. 3, p. 2649.

    Article  CAS  Google Scholar 

  3. H. Margolin, S. Patel, and Y. Mahajan: Final Report to Naval Ship Systems Command on Contract No. N00024-72-C-5465, January 1974.

  4. M. A. Greenfield, P. A. Farrar, and H. Margolin:Trans. TMS-AIME, 1968, vol. 242, p. 755.

    CAS  Google Scholar 

  5. H. Margolin, E. Levine, M. Young, and Y. Mahajan: AFML-TR-75-100, Final Report on Contract F33 615-72-6-1524, September 1975.

  6. C. A. Stubbington: AGARD Conference Proceedings No. 185, Alloy Design for Fatigue and Fracture Resistance, January 1976 (obtainable from NASA, Langley Field, Va. 23365).

  7. A. N. Stroh:Phil. Mag., 1958, vol. 3, p. 597.

    Article  Google Scholar 

  8. M. A. Greenfield and H. Margolin:Met. Tram., 1971, vol. 2, p. 841.

    CAS  Google Scholar 

  9. Yii-der Chuang and H. Margolin:Met. Trans., 1973, vol. 4, p. 1905.

    CAS  Google Scholar 

  10. T. D. Lee and H. Margolin:Met. Trans. A, 1977, vol. 8A, p. 157.

    CAS  Google Scholar 

  11. P. W. Bridgman:Studies in Large Plastic Flow and Fracture, pp. 9-37, McGraw-Hill, 1952.

  12. G. Welsch, G. Lütjering, K. Gazioglu, and W. Bunk:Met. Trans. A, 1977, vol. 8A,p. 169.

    CAS  Google Scholar 

  13. J. Jinoch, S. Ankem, and H. Margolin:Mater. Sci. Eng., in press.

  14. J. B. Newkirk and A. H. Geisler:Acta Met., 1953, vol. 1, p. 370.

    Article  Google Scholar 

  15. E. Roberts and P. G. Partridge:Deformation Twinning, p. 378, Gordon and Breach Science Publishers, 1964.

  16. J. C. Williams:Titanium Science and Technology, vol. 3, p. 1433, Plenum Press, 1973.

  17. M. Young, E. Levine, and H. Margolin:Met. Trans., 1974, vol. 5, p. 1891.

    Article  CAS  Google Scholar 

  18. A. W. Thompson, M. I. Baskes, and W. F. Flanagan:Acta Met., 1973, vol. 21, p. 1017.

    Article  CAS  Google Scholar 

  19. H. Margolin and M.S. Stanescu:.Acta Met., 1975, vol. 23, p. 1411.

    Article  CAS  Google Scholar 

  20. Y. Mahajan and H. Margolin:Mer. Trans. A, 1978, vol. 9A, p. 427.

    Article  CAS  Google Scholar 

  21. E. R. Parker, H. R. Davis, and A. E. Flanigan:ASTM, 1946, vol. 46, p. 1159.

    CAS  Google Scholar 

  22. C. G. Rhodes and J. C. Williams:Met. Trans. A, 1975, vol. 6A, p. 1670.

    Article  CAS  Google Scholar 

  23. H. Margolin, E. Levine, and M. Young:Met. Trans. A, 1977, vol. 8A, p. 363.

    Google Scholar 

  24. F. A. Crossely and R. E. Lewis: Final Report to Naval Air System Command Code Air-52013D, June 1, 1972-September 30,1973, Contract N00019-72-C-9545.

  25. F. A. McClintock:Trans. ASME (J. Appl. Mech.), 1968, vol. 35, p. 363.

    Google Scholar 

  26. L. M. Brown and J. D. Embury:Proc. Third International Conference on the Strength of Metals and Alloys, p. 164, The Inst. of Metals and the Iron and Steel Inst., Cambridge, England, 1973.

    Google Scholar 

  27. D. M. Tracy:Eng. Fract. Mech., 1971, vol. 3, p. 301.

    Article  Google Scholar 

  28. K. S. Havner and J. B. Glassco:Int. J. Fract. Mech., 1966, vol. 2, p. 506.

    Article  CAS  Google Scholar 

  29. M. R. Warren and C. J. Beevers:Met. Sci. J., 1967, vol. 1, p. 173.

    Article  CAS  Google Scholar 

  30. C. D. Calhoun and N. S. Stoloff:Met. Trans., 1970, vol. 1, p. 997.

    CAS  Google Scholar 

  31. K. E. Puttick:Phil. Mag., 1959, vol. 4, p. 964.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolin, H., Mahajan, Y. Void formation, void growth and tensile fracture in Ti-6AI-4V. Metall Trans A 9, 781–791 (1978). https://doi.org/10.1007/BF02649787

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649787

Keywords

Navigation