Skip to main content
Log in

Hole scattering mechanisms in Hg1−xCdxTe

  • Review Section
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we analyze and discuss the roles of nine different scattering mechanisms—ionized impurity, polar and nonpolar optical, acoustic, dislocation, strain field, alloy disorder, neutral impurity, and piezoelectric—in limiting the hole mobilities in p-type Hg1−xCdxTe crystals. The analysis is based on obtaining a good fit between theory and experiment for the light and heavy hole drift mobilities by optimizing certain unknown (or at the most vaguely known) material parameters such as the heavy hole mobility effective mass, degree of compensation, and the dislocation and strain field scattering strengths. For theoretical calculations, we have adopted the relaxation time approach, keeping in view its inadequacy for the polar scattering. The energy dispersive hole relaxation times have been drawn from the published literature that take into account the p-symmetry of valence band wave functions. The temperature dependencies of multiple charge states of impurities and of Debye screening length have been taken into account through a numerical calculation for the Fermi energy. Mobility data for the present analysis have been selected from the HgCdTe literature to represent a wide range of material characteristics (x=0.2–0.4, p=3×1015–1×1017 cm−3 at 77K, μpeak≅200-1000cm2V−1s−1). While analyzing the light hole mobility, the acoustic deformation and neutral impurity potentials were also treated as adjustable. We conclude that

  • • the heavy hole mobility is largely governed by the ionized impurity scattering, unless the strain field or dislocation scattering below 50K, or the polar scattering above 200K, become dominant;

  • • the light hole mobility is mainly governed by the acoustic phonon scattering, except at temperatures below 30K where the neutral impurity, strain field and dislocation scattering also become significant;

  • • the intervalence scattering transitions make negligible impact on the heavy hole mobility, but virtually limit the light hole mobility;

  • • the alloy disorder scattering does not dominate in any temperature region, although it exercises some influence at intermediate temperatures;

  • • the heavy hole mobility effective mass ratio mhh/mo∼-0.28–0.33 for crystals with x<0.4; and

  • • the light hole band deformation potential constant is ∼12 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.T. Elliott and I.L. Spain,Solid State Commun. 8, 2063 (1970).

    Article  CAS  Google Scholar 

  2. C.T. Elliott,J. Phys. D4, 697 (1971).

    Google Scholar 

  3. W. Scott and R.J. Hager,J. Appl. Phys. 42, 803 (1971).

    Article  CAS  Google Scholar 

  4. R.A. Reynolds, M.J. Brau, H. Kraus and R.T. Bate,Physics of Semimetals and Narrowgap Semiconductors, ed. D.L. Carter and R.T., Bate, (Oxford, England: Pergamon, 1971), p. 511.

    Google Scholar 

  5. C.T. Elliott, I. Melangailis, T.C. Harman and A.G. Foyt,J. Phys. Chem. Solids 33, 1527 (1972).

    CAS  Google Scholar 

  6. V.V. Ptashinskii and P.S. Kireev,Sov. Phys. Semicond. 6, 1398 (1973).

    Google Scholar 

  7. W. Scott, E.L. Stelzer and R.J. Hager,J. Appl. Phys. 47, 1408 (1976).

    Article  CAS  Google Scholar 

  8. L.A. Bovina, Yu.N. Savchenko and V.L. Stafeev,Sov. Phys. Semicond. 9, 1362 (1976).

    Google Scholar 

  9. V.P. Ponomarenko, L.A. Bovina, V.I. Stafeev and V.P. Meshcheryakova,Sov. Phys. Semicond. 13, 260 (1979).

    Google Scholar 

  10. Yu.G. Arapov, B.B. Ponikarov, I.M. Tsidil'skovskii and I.M. Nesmelova,Sov. Phys. Semicond. 13, 409 (1979).

    Google Scholar 

  11. Yu.G. Arapov, B.B. Ponikarov, I.M. Tsidil'skovskii and N.G. Shelushinina,Sov. Phys. Semicond. 13, 1126 (1979).

    Google Scholar 

  12. A.I. Elizarov, V.I. Ivanov-Omskii and K.R. Kurbanov,Sov. Tech. Phys. Lett. 7, 466 (1981).

    Google Scholar 

  13. J. Calas and J. Allegre,Phys. Status Solidi B1112, 179 (1982).

    Article  Google Scholar 

  14. O. Caporaletti and W.F.H. Micklethwaite,Phys. Lett. 89A, 151 (1982).

    CAS  Google Scholar 

  15. A.I. Elizarov, L.P. Zverev, V.V. Kruzhaev, G.M. Min'kov and O.E. Rut,Sov. Phys. Semicond. 17, 284 (1983).

    Google Scholar 

  16. A.I. Elizarov, V.I. Ivanov-Omskii, A.A. Korniyash and V.A. Petryakov,Sov. Phys. Semicond. 18, 125 (1984).

    Google Scholar 

  17. J.B. Mullin and A. Royle,J. Phys. D17, L69 (1984).

    Google Scholar 

  18. L.F. Lou and W.H. Frye,J. Appl. Phys. 56, 2253 (1984).

    Article  CAS  Google Scholar 

  19. T.T.S. Wong, as referred to in Ref. 18.

  20. M.C. Chen and J.A. Dodge,Solid State Commun. 59, 449 (1986).

    Article  CAS  Google Scholar 

  21. M.J. Hyliands, J. Thompson, M.J. Bevan, K.T. Woodhouse and V. Vincent,J. Vac. Sci. Technol. A4, 2217 (1986).

    Google Scholar 

  22. A.I. Elizarov, V.V. Kruzhaev, G.M. Min'kov, M.S. Nikitin and O.E. Rut,Sov. Phys. Semicond. 21, 292 (1987).

    Google Scholar 

  23. D. Eger, A. Zemel, D. Mordowicz and A. Sher,Appl. Phys. Lett. 46, 989 (1985).

    Article  CAS  Google Scholar 

  24. A. Zemel, A. Sher and D. Eger,J. Appl. Phys. 62, 1861 (1987).

    Article  CAS  Google Scholar 

  25. V.I. Ivanov-Omskii, N.N. Berchenko and A.I. Elizarov,Phys. Status Solidi. A103, 11 (1987).

    Google Scholar 

  26. M.C. Chen,J. Appl. Phys. 65, 1571 (1989).

    Article  CAS  Google Scholar 

  27. P. Höschl, P. Moravec, J. Franc, R. Grill and E. Belas,J. Appl. Phys. 70, 313 (1991).

    Article  Google Scholar 

  28. L. Banyai and A. Aldea,Phys. Rev. 143, 652 (1966).

    Article  CAS  Google Scholar 

  29. V.V. Voronkov, E.V. Solov'eva, M.I. Iglitsyn and M.N. Pivovarov,Sov. Phys. Semicond. 2, 1499 (1969).

    Google Scholar 

  30. M.C. Gold and D.A. Nelson,J. Vac. Sci. Technol. A4, 2040 (1986).

    Google Scholar 

  31. J.R. Meyer, F.J. Bartoli and C.A. Hoffman,J. Vac. Sci. Technol. A5, 3035 (1987).

    Google Scholar 

  32. D.D. Edwall, E.R. Gertner and W.E. TennantJ. Electron. Mater. 14, 245 (1985).

    CAS  Google Scholar 

  33. M.A. Berding, S. Krishnamurthy, A. Sher and A.-B. Chen,J. Vac. Sci. Technol. A5, 3014 (1987).

    Google Scholar 

  34. I. Makowski and M. Glicksman,J. Phys. Chem. Solids 34, 487 (1973).

    Article  CAS  Google Scholar 

  35. S. Krishnamurthy, A. Sher and A.-B. Chen,Appl. Phys. Lett. 47, 160 (1985).

    Article  CAS  Google Scholar 

  36. J.D. Wiley,Semiconductors and Semimetals, Vol. 10, ed. R.K. Willardson and A.C. Beer, (New York: Academic, 1975), Ch.2.

    Google Scholar 

  37. H. Brooks,Advan. Electron. Electron Phys. 7, 85 (1955).

    Article  CAS  Google Scholar 

  38. E.O. Kane,J. Phys. Chem. Solids 1, 82 (1957).

    Article  Google Scholar 

  39. M. Costato and L. Reggiani,Phys. Stat. Solidi B58, 471 (1973).

    Article  Google Scholar 

  40. M. Costato and L. Reggiani,Phys. Stat., Solidi B58, 47 (1973).

    Article  Google Scholar 

  41. T. Brudevoll, T.A. Fjeldly, J. Baek and M.S. Shur,J. Appl. Phys. 67, 7373 (1990).

    Article  CAS  Google Scholar 

  42. F.J. Blatt,Physics of Electronic Conduction in Solids, (New York: McGraw-Hill, 1968), p. 121.

    Google Scholar 

  43. K. Seeger,Semiconductor Physics (New York: Springer-Verlag, 1987), p. 202.

    Google Scholar 

  44. H.F. Schaake, J.H. Tregilgas, A.J. Lewis and R.M. Everett,J. Vac. Sci. Technol. A1, 1625 (1983).

    Google Scholar 

  45. P. Yamamoto, Y. Miyamoto and K. Tanikawa,J. Cryst. Growth 72, 270 (1985).

    Article  CAS  Google Scholar 

  46. F. Buch and C.N. Ahlquist,J. Appl. Phys. 45, 1756 (1974).

    Article  CAS  Google Scholar 

  47. D.J. Williams and A.W. Vere,J. Vac. Sci. Technol. A4, 2184 (1986).

    Google Scholar 

  48. S. Cole,Properties of Mercury Cadmium Telluride, EMIS Datareviews Ser. No. 3, ed. J. Brice and P. Capper, (London and New York: INSPEC, IEE, 1987), p. 93.

    Google Scholar 

  49. W. Schröter,Defects and Radiation Effects in Semiconductors, Inst. Phys. Conf. Ser. No. 46, ed. J.H. Albany (Bristol and London, England: Institute of Physics, 1979), p. 114.

    Google Scholar 

  50. H. Kressel,Semiconductors and Semimetals Vol. 16, ed. R.K. Willardson and A.C. Beer, (New York: Academic, 1981), Ch.1.

    Google Scholar 

  51. W. Shockley,Phys. Rev. 91, 228 (1953).

    Article  CAS  Google Scholar 

  52. G.L. Pearson, W.T. Read and F.J. Morin,Phys. Rev. 93, 93 (1954).

    Article  Google Scholar 

  53. A.G. Tweet,Phys. Rev. 99, 1245 (1955).

    Article  CAS  Google Scholar 

  54. W. Schröter,Phys. Stat. Solidi 21, 211 (1967).

    Article  Google Scholar 

  55. W. Schröter and R. Labusch,Phys. Stat. Solidi 36, 539 (1969).

    Article  Google Scholar 

  56. W.T. Read,Philos. Mag. 45, 775 (1954).

    CAS  Google Scholar 

  57. W.T. Read,Philos. Mag. 45, 1119 (1954)

    CAS  Google Scholar 

  58. W.T. Read,Philos. Mag. 46, 111 (1955).

    CAS  Google Scholar 

  59. R.M. Broudy and J.M. McClure,J. Appl. Phys. 31 1511 (1960).

    Article  CAS  Google Scholar 

  60. H.C. Gatos and M.C. Lavine,J. Electrochem. Soc. 107, 427 (1960).

    Article  CAS  Google Scholar 

  61. H.C. Gatos, H.C. Finn and M.C. Lavine,J. Appl. Phys. 32, 1174 (1961).

    Article  CAS  Google Scholar 

  62. M.C. Lavine, H.C. Gatos and M.C. Finn,J. Electrochem. Soc. 108, 974 (1961).

    Article  CAS  Google Scholar 

  63. R.K. Mueller and R.L. Jacobson,J. Appl. Phys. 33, 2341 (1962).

    Article  CAS  Google Scholar 

  64. A.L. Esquivel, S. Sen and W.N. Lin,J. Appl. Phys. 47, 2588 (1976).

    Article  CAS  Google Scholar 

  65. D.B. Holt,J. Appl. Phys. 31, 2231 (1960).

    Article  CAS  Google Scholar 

  66. V.L. Bonch-Bruevich and V.B. Glasko,Sov. Phys.: Solid State 3, 26 (1961).

    Google Scholar 

  67. B. Pödör,Physica Stat. Solidi 16, K167 (1966).

    Article  Google Scholar 

  68. P.A. Fedders,J. Appl. Phys. 54, 1804 (1983).

    Article  CAS  Google Scholar 

  69. C. Erginsoy,Phys. Rev. 79, 1013 (1950).

    Article  CAS  Google Scholar 

  70. A.I. Ansel'm,Sov. Phys.: JETP 24, 85 (1953).

    Google Scholar 

  71. N. Sclar,Phys. Rev. 104, 1559 (1956).

    Article  CAS  Google Scholar 

  72. N. Sclar,Phys. Rev. 104, 1548 (1956), Eq. (36).

    Article  CAS  Google Scholar 

  73. T.C. McGill and R. Baron,Phys. Rev. B11, 5208 (1975).

    Google Scholar 

  74. J.S. Blakemore,Phys. Rev. 22, 743 (1980).

    Article  CAS  Google Scholar 

  75. J. Kossut,Phys. Stat. Solidi B86, 593 (1978).

    Article  Google Scholar 

  76. E. Conwell and V.F. Weisskopf,Phys. Rev. 77, 388 (1950).

    Article  Google Scholar 

  77. K. Seeger,Semiconductor Physics (New York: Springer-Verlag, 1987), p. 170.

    Google Scholar 

  78. P. Höschl, P. Moravec, V. Prosser, V. Szöcs and R. Grill,Phys. Stat. Solidi B145, 637 (1988).

    Article  Google Scholar 

  79. R.S. Kim and S. Narita,Phys. Stat. Solidi B73, 741 (1976).

    Article  Google Scholar 

  80. Y. Guldner, C. Rigaux, A. Mycielski and Y. CounderPhys. Stat. Solidi B82, 149 (1977).

    Article  Google Scholar 

  81. Y. Guldner, C. Rigaux, A. Mycielski and Y. Counder,Phys. Stat. Solidi B81, 615 (1977).

    Article  Google Scholar 

  82. B. Jensen and A. Torabi,J. Appl. Phys. 54, 5945 (1983). Eq. (13) of this reference, mhh/mo=0.35x+0.3(1−x), is based on the Eg (x,T) and ni relations given in Ref. 81.

    Article  CAS  Google Scholar 

  83. J. Calas, J. Allegre and C. Fau,Phys. Stat. Solidi B107, 275 (1981).

    Article  Google Scholar 

  84. T.C. Harman, W.H. Kleiner, A.J. Strauss, G.B. Wright, J.G. Mavroides, J.M. Honig and D.H., Dickey,Solid State Commun. 2, 305 (1964).

    Article  CAS  Google Scholar 

  85. S.H. Groves, R.N. Brown and C.R. Pidgeon,Phys. Rev. 161, 779 (1967).

    Article  CAS  Google Scholar 

  86. S.H. Groves, T.C. Harman and C.R. Pidgeon,Solid State Commun. 9, 451 (1971).

    Article  Google Scholar 

  87. W.H. Weiler,Semiconductors and Semimetals, Vol. 16, ed. R.K. Willardson and A.G. Beer (New York: Academic, 1981), p. 119.

    Google Scholar 

  88. R.R. Galazka and T. Zakrzewski,Phys. Stat. Solidi 23, K39 (1967).

    Article  CAS  Google Scholar 

  89. J.D. Wiley and R.N. Dexter,Phys. Rev. 181, 1181 (1969).

    Article  CAS  Google Scholar 

  90. E. Finkman,J. Appl. Phys. 54, 1883 (1983).

    Article  CAS  Google Scholar 

  91. D.L. Rode,Phys. Rev. B2, 4036 (1970).

    Google Scholar 

  92. D. Chattopadhyay and B.R. Nag,J. Appl. Phys. 45, 1463 (1974).

    Article  CAS  Google Scholar 

  93. B. Pödör,Phys. Stat. Solidi B134, K145 (1986).

    Article  Google Scholar 

  94. J.A. Mroczkowski and D.A. Nelson,J. Appl. Phys. 54, 2041 (1983).

    Article  CAS  Google Scholar 

  95. G.L. Hansen and J.L. Schmit,J. Appl. Phys. 54, 1639 (1983). After the present analysis was completed, one of the authors has obtained a more accurate and general expression for ni (R.D.S. Yadava,Solid State Commun. 92, 357 [1994]).

    Article  CAS  Google Scholar 

  96. B.R. Nag,Electron Transport in Compound Semiconductors (Berlin, Germany: Springer-Verlag, 1980), p. 104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadava, R.D.S., Gupta, A.K. & Warrier, A.V.R. Hole scattering mechanisms in Hg1−xCdxTe. J. Electron. Mater. 23, 1359–1378 (1994). https://doi.org/10.1007/BF02649902

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649902

Key words

Navigation