Skip to main content
Log in

Simulation of freckles during vertical solidification of binary alloys

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model of solidification that simulates the formation of channel segregates or freckles is presented. The model simulates the entire solidification process starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. Predictions of the pattern and location of channels in different cooling situations are in good agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. McLean:Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983, pp. 1–8.

    Google Scholar 

  2. R.J. McDonald and J.D. Hunt:Trans. TMS-AIME, 1969, vol. 245, pp. 1993–97.

    Google Scholar 

  3. W.D. Bennon and F.P. Incropera:Metall. Trans. B, 1987, vol. 18B, pp. 611–16.

    Article  Google Scholar 

  4. R.J. McDonald and J.D. Hunt:Metall. Trans., 1970, vol. 1, pp. 1787–88.

    Article  Google Scholar 

  5. S.M. Copley, Anthony F. Giamei, S.M. Johnson, and M.F. Hornbecker:Metall. Trans., 1970, vol. 1, pp. 2193–2204.

    Article  Google Scholar 

  6. Anthony F. Giamei and B.H. Kear:Metall. Trans., 1970, vol. 1, pp. 2185–92.

    Article  Google Scholar 

  7. J.R. Sarazin and A. Hellawell:Metall. Trans. A, 1988, vol. 19A, pp. 1861–71.

    Article  Google Scholar 

  8. A.K. Sample and A. Hellawell:Metall. Trans. A, 1984, vol. 15A, pp. 2163–73.

    Article  Google Scholar 

  9. V. Laxmanan, A. Studer, L. Wang, J.F. Wallace, and E.A. Winsa: NASA Technical Memorandum 89885, presented at the Low Gravity Science Seminar Series, University of Colorado, Boulder, CO, Feb. 17, 1986.

    Google Scholar 

  10. A.C. Fowler:IMA J. Appl. Math., 1985, vol. 35, pp. 159–74.

    Article  Google Scholar 

  11. R. Mehrabian, M.A. Keane, and M.C. Flemings:Metall. Trans., 1970, vol. 1.pp. 3238–41.

    Google Scholar 

  12. M. Simpson, M. Yerebakan, and M.C. Flemings:Metall. Trans. A, 1985, vol. 16A, pp. 1687–89.

    Article  Google Scholar 

  13. J.C. Heinrich, S. Felicelli, and D.R. Poirier:Comp. Meth. Appl. Mech. Eng., 1991, in press.

  14. N. Streat and F. Weinberg:Metall. Trans., 1972, vol. 3, pp. 3181–84. 15. N. Standish: Metall. Trans., 1970, vol. 1, pp. 2026-29.

    Article  Google Scholar 

  15. M.J. Stewart and F. Weinberg:J. Cryst. Growth, 1972, vol. 12, pp. 217–27.

    Article  Google Scholar 

  16. P. Nandapurkar, D.R. Poirier, J.C. Heinrich, and S. Felicelli:Metall. Trans. B, 1989, vol. 20B, pp. 711–21.

    Article  Google Scholar 

  17. J.C. Heinrich, S. Felicelli, P. Nandapurkar, and D.R. Poirier:Metall. Trans. B, 1989, vol. 20B, pp. 883–91.

    Article  Google Scholar 

  18. S. Ganesan and D.R. Poirier:Metall. Trans. B, 1990, vol. 21B, pp. 173–81.

    Article  Google Scholar 

  19. D.R. Poirier:Metall. Trans. B, 1987, vol. 18B, pp. 245–56.

    Article  Google Scholar 

  20. S. Ganesan: Ph.D. Dissertation, University of Arizona, Tucson, AZ, 1990.

    Google Scholar 

  21. C. Beckermann and R. Viskanta:Int. J. Heat Mass Transfer, 1988, vol. 31, pp. 35–46.

    Article  Google Scholar 

  22. P.J. Nandapurkar, D.R. Poirier, and J.C. Heinrich:Numerical Heat TransferPart A, 1991, vol. 19, pp. 297–311.

    Article  Google Scholar 

  23. D.R. Poirier, P.J. Nandapurkar, and S. Ganesan:Metall. Trans. B, 1991, vol. 22B, pp. 889–900. 25. M.C. Flemings: Solidification Processing, McGraw-Hill Book Co., New York, NY, 1974, pp. 141-46.

    Article  Google Scholar 

  24. Metals Handbook, 8th ed., ASM, Metals Park, OH, 1973, vol. 8, p. 330.

  25. D.R. Poirier:Metall. Trans. A, 1988, vol. 19A, pp. 2349–54.

    Article  Google Scholar 

  26. H.R. Thresh and A.F. Crawley:Metall. Trans., 1970, vol. 1, pp. 1531–35.

    Article  Google Scholar 

  27. D.R. Poirier and P. Nandapurkar:Metall. Trans. A, 1988, vol. 19A, pp. 3057–61.

    Article  Google Scholar 

  28. J.C. Heinrich:Comp. Meth. Appl. Mech. Eng., 1988, vol. 69, pp. 65–88.

    Article  Google Scholar 

  29. J.C. Heinrich:Int. J. Num. Meth. Eng., 1984, vol. 20, pp. 447–64.

    Article  Google Scholar 

  30. M.C. Flemings and G.E. Nereo:Trans. TMS-A1ME, 1967, vol. 239, pp. 1449–61.

    Google Scholar 

  31. A.S. Sangani and A. Acrivos:Int. J. Multiphase Flow, 1982, vol. 8, pp. 193–206.

    Article  Google Scholar 

  32. J.E. Drummond and M.I. Tahir:Int. J. Multiphase Flow, 1984, vol. 10, pp. 515–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, University of Arizona

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felicelli, S.D., Heinrich, J.C. & Poirier, D.R. Simulation of freckles during vertical solidification of binary alloys. Metall Trans B 22, 847–859 (1991). https://doi.org/10.1007/BF02651162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651162

Keywords

Navigation