Skip to main content
Log in

The orientation dependence of fatigue-crack growth in 8090 Al-Li plate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A series of fatigue-crack growth rate (FCGR) tests was carried out on 8090 Al-Li plate to examine the effects of specimen orientation on fatigue-crack growth. The directionality of fatigue fracture behavior is found to be related to the strong {110}〈112〉 texture in this alloy. Based on a previously developed transgranular FCGR model using restricted slip reversibility (RSR) concepts, [1] a mechanistic model is developed for transgranular fatigue-crack growth in highly textured materials. The model takes the form of the Paris relationship with a power law exponent of 3, and the material texture is shown to strongly influence the proportional factor. The effect of texture on FCGR is related through a geometric factor cos2 ϕ, where ϕ defines the angle between the load axis and the normal of the favorable slip plane. The effect of specimen orientation on FCGR in 8090 Al-Li alloy is shown to be related to a combination of its anisotropic mechanical properties and the variation of angleϕ with specimen orientation. The model further predicts that fatigue-crack growth rates will be slower in many textured materials than texturefree materials becauseϕ > 0 and cos2 ϕ < 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.J. Wu, A.K. Koul, and A.S. Krausz:Metall. Trans. A, 1993, vol. 24A, pp. 1373–80.

    CAS  Google Scholar 

  2. Aluminum-Lithium Alloys, Proc. 1st Int. Conf., T.H. Sanders and E.A. Starke, Jr., eds., TMS-AIME, Warrendale, PA, 1981.

    Google Scholar 

  3. Aluminum-Lithium Alloys II, Proc. 2nd Int. Conf., T.H. Sanders and E.A. Starke, Jr., eds., TMS-AIME, Warrendale, PA, 1983.

    Google Scholar 

  4. Aluminum-Lithium Alloys III, Proc. 3rd Int. Conf., C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., Institute of Metals, Oxford, United Kingdom, 1985.

    Google Scholar 

  5. Aluminum-Lithium Alloys, Proc. 5th Int. Conf., T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Materials and Component Engineering Publishers Ltd., Williamsburg, VA, 1989.

    Google Scholar 

  6. D. McCammond, S.A. Meguid, A.N. Sinclair, J.K. Spelt, R.D. Venter, M. Gabbani, and M. Mummi: Report NAE-CR-4, No. 31068, National Research Council of Canada, Ottawa, ON, 1989.

    Google Scholar 

  7. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie:Metall. Trans. A, 1988, vol. 19A, pp. 563–69.

    CAS  Google Scholar 

  8. G.R. Yoder, P.S. Pao, M.A. Imam, and L.A. Cooley: inAluminum-Lithium Alloys, Proc. 5th Int. Al-Li Conf., T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Williamsburg, VA, 1989, vol. II, pp. 1033–41.

  9. D.C. Slavik, C.P. Blankenship, Jr., E.A. Starke, Jr., and R.P. Gangloff:Metall. Trans. A, 1993, vol. 24A, pp. 1807–17.

    CAS  Google Scholar 

  10. J. Petit and G. Henaff:Scripta Metall., 1991, vol. 25, pp. 2683–87.

    Article  CAS  Google Scholar 

  11. R.M.N. Pelloux:Trans. ASM, 1969, vol. 62, p. 281.

    CAS  Google Scholar 

  12. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie:Aluminum-Lithium Alloys: Design, Development and Application Update, ASM International, Metals Park, OH, 1987, pp. 173–86.

    Google Scholar 

  13. R.S. Piascik and R.P. Gangloff:Metall. Trans. A, 1991, vol. 22A, pp. 2415–28.

    CAS  Google Scholar 

  14. C.P. Blankenship, Jr. and E.A. Starke, Jr.:Metall. Trans. A, 1993, vol. 24A, pp. 833–41.

    CAS  Google Scholar 

  15. Supplied Data Sheet, Serial No. 0143639, Aluminum Supply Ltd., Totteridge, London, Nov. 4, 1990.

  16. K.S. Chan and T.A. Cruse:Eng. Fract. Mech., 1986, vol. 23, pp. 863–74.

    Article  Google Scholar 

  17. Test Plan and Instructions for E24.04.04 Round Robin on Crack Opening Load Measurement, ASTM E-24, 1991.

  18. M. Peters, K. Welpmann, and T.H. Sanders, Jr.: inAdvanced Materials Research and Development for Transport, R.J.H. Wanhill, W.J.G. Bunk, and J.G. Wurm, eds., Les Editions de Physique, Les Ulis Cedex, France, 1985, vol. VII, pp. 63–70.

    Google Scholar 

  19. S.J. Harris, B. Noble, and A. Dodd: inAluminum-Lithium Alloys Proc. 5th Int. Conf., T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Materials and Component Engineering Publ. Ltd., Williamsburg, Virginia, March 1989, pp. 1061–75.

    Google Scholar 

  20. C. Laird and G.C. Smith:Phil. Mag., 1962, vol. 7, pp. 847–57.

    Article  CAS  Google Scholar 

  21. P. Neumann:Acta Metall., 1974, vol. 22, pp. 1155–78.

    Article  CAS  Google Scholar 

  22. M. Kikukawa, M. Jono, and Adachi: inFatigue Mechanism, ASTM STP 675, 1979, pp. 234–53.

    Google Scholar 

  23. F.A. McClintock: inFracture, H. Liebowitz, ed., Academic Press, New York, NY, 1971, vol. 3, pp. 47–225.

    Google Scholar 

  24. C. Fong and D. TrOmans:Metall. Trans. A, 1988, vol. 19, pp. 2753–64.

    Google Scholar 

  25. A.S. Krausz and H. Eyring:Deformation kinetics, Wiley Interscience, New York, NY, 1975.

    Google Scholar 

  26. V.I. Smirnov:A Course of Higher Mathematics, Pergamon Press, New York, NY, 1964, vol. I.

    Google Scholar 

  27. J.R. Rice:Fatigue Crack Propagation, ASTM STP 415, 1967, pp. 247–311.

    Google Scholar 

  28. P.C. Paris: inFatigue Thresholds, J. Backlund, A.F. Blom, and C.J. Beevers, eds., Engineering Materials Advisory Service, Warley, United Kingdom, 1982, vol. I, p. 3.

    Google Scholar 

  29. Damage Tolerant Design Handbook, J. Gallagher, ed., Metals and Ceramics Information Center, Columbus, OH, 1983, pp. 75–120.

    Google Scholar 

  30. J.M. Cox, D.E. Pettit, and S.L. Langenbeck: inFatigue at Low Temperature, ASTM STP 857, 1985, pp. 241–56.

    CAS  Google Scholar 

  31. A.J. McEvily: inFatigue Mechanisms, ASTM STP 811, 1983, p. 283.

    Google Scholar 

  32. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1979, vol. 2, pp. 86 and 131.

  33. E.W. Lee and W.E. Frazier:Scripta Metall, 1988, vol. 22, pp. 93–98.

    Article  Google Scholar 

  34. P.C. Paris and G.C. Sih: inFracture Toughness Testing and Its Application, ASTM STP 381, 1965, pp. 30–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X.J., Wallace, W., Raizenne, M.D. et al. The orientation dependence of fatigue-crack growth in 8090 Al-Li plate. Metall Mater Trans A 25, 575–588 (1994). https://doi.org/10.1007/BF02651599

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651599

Keywords

Navigation