Skip to main content
Log in

Control of iron nitride layers growth kinetics in the binary Fe-N system

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study is within the framework of a research program dedicated to defining the optimal conditions for the nitriding of iron and steels at atmospheric pressure by using various mixtures, NH3-N2-H2 and NH3-Ar. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the nitride layer growth rate, and the nitrogen concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses, and metallurgical observations (X-ray diffraction, optical microscopy, and electron microprobe anal-ysis). The results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions. By applying the model to the iron-nitrogen binary system, when the ε/γ/α configuration referred to the Fe-N phase diagram is formed, we have experimentally determined the effective diffusion coefficient of nitrogen in the ε phase. The latter is constant for a composition of the ε nitride between 8 and 9.5 wt pct nitrogen. All the results obtained show that it is possible, by means of dynamic gas flow regulation, to eliminate the incubation period and to control the thickness, composition, and structure of the compound layer at the beginning of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bell:Heat Treat. Met., 1975, vol. 2, pp. 39–49.

    CAS  Google Scholar 

  2. H.J. Grabke:Ber. Bunsenges. Phys. Chem., 1968, vol. 72, pp. 533- 48.

    Google Scholar 

  3. H.J. Grabke:Chemical Metallurgy of Iron and Steel, Proc. Sheffield Conf., 1971, pp. 363–66.

  4. H.J. Grabke:Arch. Eisenhüttenwes., 1975, vol. 46, pp. 75–81.

    CAS  Google Scholar 

  5. H.J. Grabke:Mater. Sci. Forum, 1994, vol. 154, pp. 69–86.

    CAS  Google Scholar 

  6. R.E.E. Pulkkinen:Met. Sci., 1982, vol. 16, pp. 37–40.

    Article  CAS  Google Scholar 

  7. L. Torchane: Ph.D. Thesis, INPL, Nancy, France, 1994.

  8. L. Torchane, P. Bilger, J. Dulcy, and M. Gantois:Mater. Sci. Forum, 1994, vols. 163-165, pp. 707–12.

    CAS  Google Scholar 

  9. M. Gantois:Mater. Sci. Forum, 1994, vols. 163-165, pp. 37–48.

    CAS  Google Scholar 

  10. M.A.J. Somers, and E.J. Mittemeijer:Metall. Mater. Trans. A, 1995, vol. 29A, pp. 57–74.

    Google Scholar 

  11. H. Du: Ph.D. Thesis,Royal Institute of Technology, Stockholm, Sweden, 1994.

  12. B. Prenosil:Konove Mater., 1965, vol. 3, pp. 69–87.

    CAS  Google Scholar 

  13. Yu.M. Lakhtin and Ya.D. Kogan:Nitriding of Steel, Mashinostroenie, Moscow, 1976 [(in Russian).]

    Google Scholar 

  14. H. Du:J. Phase Equil, 1993, vol. 14 (6), pp. 682–93.

    CAS  Google Scholar 

  15. E. Lehrer:Z Electrochem., 1930, vol. 36, pp. 383–92.

    CAS  Google Scholar 

  16. V.G. Paranjpe, M. Cohen, M.B. Bever, and C.F. Floe:Trans. AIME, J. Met, 1950, vol. 188, pp. 261–67.

    CAS  Google Scholar 

  17. A. Burdese:Metallurgia Italiana, 1955, vol. 47, pp. 357–66.

    CAS  Google Scholar 

  18. K.H. Jack:Proc. R. Soc. A, 1951, vol. 208, pp. 200–15.

    Article  CAS  Google Scholar 

  19. D. Atkinson and C. Bodsworth:J. Iron Steel Inst., 1970, vol. 208, pp. 587–93.

    CAS  Google Scholar 

  20. Z. Przylecki:Sesja Naukowa Kom. Technol. Budowy Maszyn, Poznan, 1979, pp. 35–84.

  21. K. Frisk: CALPHAD, 1991, vol. 15 (1), pp. 79–106.

    Article  Google Scholar 

  22. D. Heger and D. Bergner:Härterei-Tech. Mitt, 1990, vol. 46, pp. 331–38.

    Google Scholar 

  23. K. Schwerdtfeger, P. Grieveson, and E.T. Turkdogan:Trans. AIME, 1969, vol. 245, pp. 2461–66.

    CAS  Google Scholar 

  24. L.S. Darken:Trans. AIME, 1948, vol. 175, pp. 184–94.

    Google Scholar 

  25. H. Du and J. Agren:Mater. Sci. Forum, 1992, vols. 102-104, pp. 243–48.

    CAS  Google Scholar 

  26. A. Marciniak:Surf. Eng., 1985, vol. 1 (4), pp. 283–88.

    Google Scholar 

  27. Y. Adda and J. Phillibert:La Diffusion Dans les Solides, Tome I, Bibliothèque de Science et Technique Nucléaire, Saclay, France, 1966.

    Google Scholar 

  28. J. Crank:The Mathematics of Diffusion, Clarendon Press, Oxford, United Kingdom, 1956.

    Google Scholar 

  29. Z. Przylecki and L. Maldzinski:Carbides, Nitrides, and Borides, Poznan/Kolobrzeg, Poznan, Poland, 1987, pp. 153–62.

    Google Scholar 

  30. J. Slycke and L. Sproge:Surf. Eng., 1989, vol. 5 (2), pp. 125–40.

    CAS  Google Scholar 

  31. M.A.J. Somers and E.J. Mittemeijer:Mater. Sci. Forum, 1992, vols. 102-104, pp. 223–28.

    Article  CAS  Google Scholar 

  32. L.J. Dijkstra:Trans. AIME, 1949, vol. 185, pp. 252–60.

    Google Scholar 

  33. J.D. Fast and M.B. Varrijp:J. Iron Steel Inst, 1955, vol. 180, pp. 337–43.

    CAS  Google Scholar 

  34. N.S. Corney and E.T. Turkdogan:J. Iron Steel Inst, 1955, vol. 180, pp. 344–48.

    CAS  Google Scholar 

  35. W. Pitsch and E. Houdremont:Arch. Eisenhüttenwes., 1956, vol. 27, pp. 281–84.

    CAS  Google Scholar 

  36. R. Rawlings and D. Tambini:J. Iron Steel Inst, 1956, vol. 184, pp. 302–08.

    CAS  Google Scholar 

  37. H.J. Grabke:Ber. Bunsenges. Phys. Chem., 1969, vol. 73, pp. 596- 601 (in German).

    CAS  Google Scholar 

  38. M.A.J. Somers, N.M. Van Der Pers, D. Schalkoord, and E.J. Mittemeijer:Metall. Trans. A, 1990, vol. 21A, pp. 189–204.

    CAS  Google Scholar 

  39. H.A. Wriedt:Trans. TMS-AIME, 1969, vol. 245, pp. 43–46.

    CAS  Google Scholar 

  40. B.J. Kooi: Ph.D. Thesis, Delft University of Technology, 1995.

  41. J. Kunze:Nitrogen and Carbon in Iron and Steels; Thermodynamics, Physical Research, Vol. 16, Akademie-Verlag, Berlin, 1990.

    Google Scholar 

  42. O. Eisenhut and E. Kaupp:Z Elektrochem., 1930, vol. 36 (6), pp. 392–404.

    CAS  Google Scholar 

  43. S. Brunauer, M.E. Jefferson, P.H. Emmett, and S.B. Hendricks:J. Am. Chem. Soc, 1931, vol. 53, pp. 1778–86.

    Article  Google Scholar 

  44. A. Burdese:Ann. Chim., 1959, vol. 49, pp. 1873–84.

    CAS  Google Scholar 

  45. F.K. Naumann and G. Langenscheid:Arch. Eisenhüttenwes., 1965, vol. 36 (9), pp. 677–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torchane, L., Bilger, P., Dulcy, J. et al. Control of iron nitride layers growth kinetics in the binary Fe-N system. Metall Mater Trans A 27, 1823–1835 (1996). https://doi.org/10.1007/BF02651932

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651932

Keywords

Navigation