Skip to main content
Log in

Increased ductility in high velocity electromagnetic ring expansion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thin rings have been rapidly expanded using large, transient magnetic fields to study the effect of deformation velocity on strains to failure of ductile metals. A classical electrodynamics analysis similar to one developed previously by Gourdin was employed to estimate sample velocities. Within expansion velocities studied (50 to 300 m/s), the experimental results show that ductility of Al 6061 and OFHC Cu increases monotonically with increasing velocity. In each case, sample strain at failure is almost twice as great at 300 m/s as in the static condition. Comparison to a one-dimensional rigid-viscoplastic dynamic finite element method analysis suggests that inertial effects are mainly responsible for enhanced ductility over a wide range of velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Considére:Ann. Ponts Chaussees, 1885, vol. 9, pp. 574–75.

    Google Scholar 

  2. E.W. Hart:Acta Metall., 15, 351–55 (1967).

    Article  CAS  Google Scholar 

  3. J. Campbell:J. Mech. Phys. Solids, 15, 359–70 (1967).

    Article  Google Scholar 

  4. D. Lee and W.A. Backofen:Trans. AIME, 239, 1034–40 (1967).

    Google Scholar 

  5. D.A. Woodford:Trans. Am. Soc. Met., 62, 291–93 (1969).

    CAS  Google Scholar 

  6. E. Dunconbe:Int. J. Mech. Sci., 14, 325–37 (1972).

    Article  Google Scholar 

  7. J.J. Jonas, R.A. Holt, and C.E. Coleman:Acta Metall., 1976, vol. 24, pp. 911–18.

    Article  Google Scholar 

  8. A.K. Ghosh:Acta Metall., 25, 1413–24 (1977).

    Article  Google Scholar 

  9. J.W. Hutchinson and K.W. Neale:Acta Metall., 25, 839–46 (1977).

    Article  CAS  Google Scholar 

  10. J.J. Jonas and B. Baudelet:Acta Metall., 25, 43–50 (1977).

    Article  Google Scholar 

  11. F.A. Nichols:Acta Metall, 28, 633–73 (1980).

    Article  Google Scholar 

  12. I.H. Lin, J.P. Hirth, and E.W. Hart:Acta Metall, 29, 819–27 (1981).

    Article  CAS  Google Scholar 

  13. S.L. Semiatin, A.K. Ghosh, and J.J. Jonas:Metall. Trans. A, 16A, 2291–98 (1985).

    Google Scholar 

  14. K. Chung and R.H. Wagoner:Metall. Trans. A, 19A, 293–300 (1988).

    CAS  Google Scholar 

  15. V.S. Balanethiram and G.S. Daehn:Scripta Metall. Mater., 30, 515–20 (1994).

    Article  CAS  Google Scholar 

  16. V.S. Balanethiram and G.S. Daehn:Scripta Metall. Mater., 27, 1783–88 (1992).

    Article  CAS  Google Scholar 

  17. X. Hu and G.S. Daehn:Acta Metall, 1995, in press.

  18. T. von Karman and P. Duwez:J. Appl Phys., 1950, vol. 21, pp. 987–94.

    Article  Google Scholar 

  19. D.E. Grady and D.A. Benson:Exp. Mech., 12, 393–400 (1983).

    Article  Google Scholar 

  20. A.S. Korhonen and H.J. Kleemola:Metall. Trans. A, 9A, 979–86 (1978).

    Google Scholar 

  21. M. Wada and T. Nakamura:Phil. Mag. A, 38A, 167–85 (1978).

    Google Scholar 

  22. G.F. Ferron:Mater. Sci. Eng., 49, 241–48 (1981).

    Article  CAS  Google Scholar 

  23. A.K. Sachdev and J.E. Hunter:Metall. Trans. A, 13A, 1063–68 (1982).

    CAS  Google Scholar 

  24. R.A. Ayres:Metall. Trans. A, 16A, 37–43 (1985).

    Google Scholar 

  25. S.L. Semiatin, R.A. Ayres, and J.J. Jonas:Metall. Trans. A, 16A, 2299–308 (1985).

    Google Scholar 

  26. M.R. Lin and R.H. Wagoner:Metall. Trans. A, 18A, 1035–42 (1987).

    CAS  Google Scholar 

  27. Y. Gao and R.H. Wagoner:Metall. Trans. A, 18A, 1001–09 (1987).

    CAS  Google Scholar 

  28. K.S. Raghavan and R.H. Wagoner:Int. J. Plasticity, 3, 33–49 (1987).

    Article  CAS  Google Scholar 

  29. Y.H. Kim and R.H. Wagoner:Int. J. Mech. Sci., 29, 179–94 (1990).

    Article  Google Scholar 

  30. W.W. Wood, R.A. Ford, W.D. Moore, and C.W. McHugh: inSheet Metals Forming Technology Vol. I, Aeronautical Systems Division Contract Report No. ASD-TDR-63-7-871, Chance-Vought Corp., Dallas, TX, 1963.

    Google Scholar 

  31. W.W. Wood:Exp. Mech., 1967, vol. 19, pp. 441–46.

    Article  Google Scholar 

  32. M.M. Altynova: Master's Thesis, The Ohio State University, Columbus, OH, 1995.

    Google Scholar 

  33. W.H. Gourdin:J. Appl. Phys., 65, 411–22 (1989).

    Article  Google Scholar 

  34. B. Dibartolo:Classic Theory of Electromagnetism, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  35. American Institute of Phvsics Handbook, 3rd ed., McGraw-Hill, New York, NY, 1972, pp. 5–30.

  36. J.H. Hollomon:Trans. AIME, 162, 268–89 (1945).

    Google Scholar 

  37. P.S. Follansbee and U.F. Kocks:Acta Metall, 36, 81–93 (1988).

    Article  Google Scholar 

  38. F.J. Zerilli and R.W. Armstrong:J. Appl. Phys., 61, 1816–25 (1987).

    Article  CAS  Google Scholar 

  39. Smithells Metals Reference Book, 6th ed., E.A. Brandes, ed., Butterworth and Co. (Publishers) Ltd., London, 1983.

    Google Scholar 

  40. N.F. Mott:Proc. R. Soc. London, Ser. A, Math. Phys. Sci., 189, 300–08 (1947).

    Article  Google Scholar 

  41. M.E. Kipp and D.E. Grady:J. Mech. Phys. Solids, 33, 399–415 (1985).

    Article  Google Scholar 

  42. D.E. Grady and M.M. Hightower: inShock Wave and High Strain Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker Inc. New York, NY, 1990, pp. 713–21.

    Google Scholar 

  43. D.L. Wesenberg and M.J. Sagartz:J. Appl. Mech., 44, 643–46 (1977).

    Google Scholar 

  44. P.S. Follansbee:Metallurgical Applications of Shock Wave and High Strain Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker Inc., New York, NY, 1986, pp. 451–62.

    Google Scholar 

  45. W. Tong, R.J. Clifton, and S. Huang:J. Mech. Phys. Solids, 40, 125–94 (1992).

    Google Scholar 

  46. X. Hu, R.H. Wagoner, G.S. Daehn, and S. Ghosh:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2723–34.

    Article  CAS  Google Scholar 

  47. W.H. Gourdin, S. Weinland, and R. Boling:Rev. Sci. Instrum., 60, 427–32 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altynova, M., Hu, X. & Daehn, G.S. Increased ductility in high velocity electromagnetic ring expansion. Metall Mater Trans A 27, 1837–1844 (1996). https://doi.org/10.1007/BF02651933

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651933

Keywords

Navigation