Skip to main content
Log in

A theoretical model of the formation morphologies of porous silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper a qualitative theoretical model describing the mechanism and formation morphology of porous silicon is presented. The model is based on the diffusion limited aggregation models of Witten and Sanders. The validity of this model is verified by performing small scale computer simulations to construct various porous silicon structures. These structures are compared with the known properties of bulk silicon and morphologies of porous silicon. The postulates of the model are sufficiently rich to explain the relationship between pore density, pore diameter, porosity as well as crystallographic etch selectivity and electropolishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Herino, G. Bomchil, K. Barla, C. Bertrand and J. L. Ginoux, J. Electrochem. Soc.134, 1994, (1987).

    Article  CAS  Google Scholar 

  2. M. J. J. Theunissen, J. Electrochem. Soc.119, 351 (1972).

    Article  CAS  Google Scholar 

  3. Y. Watanabe, Y. Arita, T. Yokoyama and Y. Igarashi, J. Electrochem. Soc.122, 1351 (1975).

    Article  CAS  Google Scholar 

  4. Y. Arita and Y. Sunohara, J. Electrochem. Soc.124, 285 (1977).

    Article  CAS  Google Scholar 

  5. T. Unagami and M. Seki, J. Electrochem. Soc.125, 1339 (1978).

    Article  CAS  Google Scholar 

  6. T. Unagami, J. Electrochem. Soc.127, 476 (1980).

    Article  CAS  Google Scholar 

  7. M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, J. Cryst. Growth73, 622 (1985).

    Article  CAS  Google Scholar 

  8. K. V. Heber, Electrochim. Acta.23, 127 (1978).

    Article  CAS  Google Scholar 

  9. V. P Parkhutik, L. K. Glinenko and V. A. Labunov, Surf. Technol.20, 265 (1983).

    Article  CAS  Google Scholar 

  10. T. A. Witten and L. M. Sander, Phys. Rev. Lett.47, 1400 (1981).

    Article  CAS  Google Scholar 

  11. T. A. Witten and L. M. Sander, Phys. Rev. B,27, 5686 (1983).

    Article  Google Scholar 

  12. R. L. Smith, B. Kloeck and S. D. Collins, J. Electrochem. Soc, to be published 1988.

  13. R. Memming and G. Schwandt, Surf. Science,4, 109, (1966).

    Article  CAS  Google Scholar 

  14. S. S. Tsao, D. R. Myers, T. R. Guilinger, M. J. Kelly, and A. K. Datye, J. Appl. Phys.62, 4182 (1987).

    Article  CAS  Google Scholar 

  15. R. L. Meek, J. Electrochem. Soc.118, 437 (1971).

    Article  CAS  Google Scholar 

  16. R. C. Frye, Proc. Mater. Sci. Symp.33, 53 (1984).

    CAS  Google Scholar 

  17. H. Unno, K Imai and S. Muramoto, J. Electrochem. Soc.134, 645 (1987).

    Article  CAS  Google Scholar 

  18. T. Umagami and M. Seki, J. Electrochem. Soc.125, 1339 (1978).

    Article  Google Scholar 

  19. S. M. Sze, Physics of Semiconductor Devices, Second Edition, John Wiley and Sons, New York (1981).

    Google Scholar 

  20. S. K. Ghandhi, VLSI Fabrication Principles, John Wiley and Sons, New York (1983).

    Google Scholar 

  21. E. Bassous, IEEE Electron Dev.ED-24, 1178 (1978).

    Google Scholar 

  22. A. Reisman, M. Berkenblit, S. A. Chan, F. B. Kaufman and D. C. Green, J. Electrochem. Soc.126, 1407 (1979).

    Google Scholar 

  23. D. R. Turner, J. Electrochem. Soc.105, 402 (1958).

    Article  CAS  Google Scholar 

  24. R. L. Meek, J. Electrochem. Soc.118, 1240 (1971).

    Article  CAS  Google Scholar 

  25. J. W. Faust, Jr. and E. D. Palik, J. Electrochem. Soc.130, 1 4013 (1983).

    Article  Google Scholar 

  26. E. D. Palik, V. M. Bermudez and O. J. Glembocki, J. Electrochem. Soc.132, 135 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R.L., Chuang, S.F. & Collins, S.D. A theoretical model of the formation morphologies of porous silicon. J. Electron. Mater. 17, 533–541 (1988). https://doi.org/10.1007/BF02652104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652104

Key words

Navigation