Skip to main content
Log in

Plasma deposition of aluminum oxide films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A plasma deposition technique for amorphous aluminum oxide films is discussed. A 450 kHz or 13.56 MHz power supply was used to generate the plasma and the deposition of the film was achieved at low plasma power using trimethyl-aluminum and carbon dioxide reactant sources. It has been found that for the low frequency plasma the growth is strongly dependent upon TMA concentration, indicating that the growth process is mass transport limited. On the other hand using the 13.56 MHz discharge results in a surface controlled growth rate. An increase in the deposition temperature up to 300° C makes the films more dense and lowers their etching rate. FTIR and ESCA measurements showed that oxidation is only completed with high CO2 concentrations and a deposition temperature above 250° C. The dielectric films were found to have a dielectric constant in the range 7.3=2-9 and a refractive index between 1.5–1.8 depending upon deposition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Nowicki, J. Vac. Sci. Technol.14 127 (1977).

    Article  CAS  Google Scholar 

  2. R. S. Ehle, B. J. Baliga and W. Katz, J. Electron. Mater.12, 587 (1983).

    CAS  Google Scholar 

  3. J. Saraie, J. Kwon and Y. Yodogawa, J. Electrochem. Soc.132, 890 (1985).

    Article  CAS  Google Scholar 

  4. H. Katto and Y. Koga, J. Electrochem. Soc.118,1619 (1971).

    Article  CAS  Google Scholar 

  5. A. H. Bailey, D. A. Darbshire, A. P. Overbury, C. W. Pitt and J. Newton, Vacuum36, 139 (1986).

    Article  CAS  Google Scholar 

  6. R. Solanki, W. H. Ritchie and G. J. Collins, Appl. Phys. Lett.43, 454 (1983).

    Article  CAS  Google Scholar 

  7. M. Minakata and Y. Furukawa, 25th Electronic Materials Conference, Burlington, VT, USA, June 23, 1983.

  8. A. Talébian, Thèse de 3ème Cycle, Université de Nantes, Novembre 1986.

  9. R. G. Frieser, J. Electrochem. Soc.113, 357 (1966).

    Article  CAS  Google Scholar 

  10. L. H. Hall and W. C. Robinette, J. Electrochem. Soc.113, 1624 (1971).

    Article  Google Scholar 

  11. J. A. Aboaf, J. Electrochem. Soc.9, 948 (1967).

    Article  Google Scholar 

  12. M. T. Duffy and W. Kern, R.C.A. Rev.31, 754 (1970).

    CAS  Google Scholar 

  13. D. J. Ehrlich and R. M. Osgood Jr., Chem. Phys. Lett.79, 381 (1981).

    Article  CAS  Google Scholar 

  14. K. J. Laidler, Chemical Kinetics, McGraw-Hill, New-York, 1965.

    Google Scholar 

  15. Y. Catherine and A. Pastol, European Materials Research Society E-MRS Meeting, Strasbourg-France, June 2–5 (1987).

  16. R. P. Chang and S. Darack, Appl. Phys. Lett.42, 272 (1983).

    Article  CAS  Google Scholar 

  17. K. Nakamoto, infrared Spectra of inorganic and coordination compounds, Wiley, New York, 1963, pp. 104–211, 213–217.

    Google Scholar 

  18. R. P. H. Chang, S. Darak, C. C. Lane, D. Aliara and E. Ong, J. Vac. Sci. Technol.B1, 935 (1983).

    Google Scholar 

  19. Y. Zhiquiang and G. L. Harding, Thin Solid Films120, 81 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catherine, Y., Talebian, A. Plasma deposition of aluminum oxide films. J. Electron. Mater. 17, 127–134 (1988). https://doi.org/10.1007/BF02652142

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652142

Key words

Navigation