Skip to main content
Log in

The influence of compositional and microstructural variations on the mechanism of static fracture in aluminum alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The object of the paper is to examine the effects of alloy purity and state of aging on the fracture mechanism and resultant toughness of pure Al-Cu alloys, and commercial duralumin. In pure alloys, the transition from a shear to an intergranular mode of fracture with overaging is associated with changes in the nature and size of the matrix precipitate, which affect the slip character. In the corresponding commercial purity alloys, no such fracture mode transition occurs. The presence of second-phase dispersoids inhibits planar slip, and in the overaged state inclusion-matrix interfaces present a suitable alternative site to the grain boundaries for strain accumulation, resulting in debonding leading to the initiation of voids, which subsequently grow and coalesce. The fracture toughness, as conventionally measured, indicates the material’s resistance to crack initiation rather than propagation and is effectively independent of fracture mode. The work hardening capacity has a marked effect on void size, and is shown to be a sensitive indicator of fracture toughness in both pure and commercial alloys. Based on a simple model, good agreement is obtained between experimental results of toughness and those predicted from a knowledge of the tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kelly and R. B. Nicholson:Progr. Mater. Sci., 1963, vol. 10, p. 15.

    Google Scholar 

  2. J. G. Kaufman and H. Y. Hunsicker: ASTM, STP 381, p. 290,1965.

  3. R. Develay:Metals and Materials, vol. 6, p. 404, 1972.

    Google Scholar 

  4. H. Y. Hunsicker:Aluminium, K. van Horn, ed., vol. 1, p. 148,ASM, 1967.

  5. P. J. Guest:M.Sc. Thesis, Report No. UCRL 27872, University of California, 1967.

  6. I. Kirman:Met. Trans., 1971, vol. 2, p. 1761.

    CAS  Google Scholar 

  7. P. N. T. Unwin and G. C. Smith:J. Inst. Metals, 1969, vol. 96, p. 299.

    Google Scholar 

  8. G. T. Hahn and A. R. Rosenfield:Met. Trans. A, 1975, vol. 6A, p. 653.

    CAS  Google Scholar 

  9. R. A. Queeney:Met. Trans., 1974, vol. 5, p. 308.

    CAS  Google Scholar 

  10. British Standard: B.S. DD3, Draft for Development, Fracture Toughness Testing.

  11. R. O. Ritchie, G. G. Garrett, and J. F. Knott:Int. J. Fract. Mech., 1971, vol. 7, p. 462.

    Google Scholar 

  12. J. Davies, D. F. Cannon, and R.J. Allen:Nature, 1970, vol. 225, p. 1240.

    Article  CAS  Google Scholar 

  13. J. M. Lowes and G. D. Fearnehough:Eng. Fract. Mech., 1971, vol. 3, p. 103.

    Article  Google Scholar 

  14. G. G. Garrett: Ph.D. Thesis, University of Cambridge, 1973.

  15. J. M. Krafft and G. R. Irwin: ASTM, STP 381, p. 114, 1965.

  16. L. Roesch and G. Henry: ASTM, STP 453, p. 26, 1969.

  17. H. C.Burghard:Met. Trans., 1974, vol. 5, p. 2083.

    Article  Google Scholar 

  18. G. Thomas and J. Nutting:J. Inst. Metals, 1959, vol. 88, p. 81.

    Google Scholar 

  19. N. Ryurm.Acta Met., 1968, vol. 16, p. 327.

    Article  Google Scholar 

  20. R. W. Bauer and H. G. F. Wilsdorf:Scr. Met., 1973, vol. 7, p. 1213.

    Article  CAS  Google Scholar 

  21. H. P. van Leeuwen.et al..: NLRTR 70, p. 105, Nat. Aero. Lab., Holland, 1971.

  22. A. J. DeArdo: Ph.D. Thesis, Carnegie-Mellon University, 1970.

  23. G. Greetham and R. W. Honeycombe:J. Inst. Metals, 1960, vol. 89, p. 13.

    CAS  Google Scholar 

  24. J. Silcock:Acta Met., 1960, vol. 8, p. 589.

    Article  CAS  Google Scholar 

  25. J. Byrne, M. Fine, and A. Kelly:Phil. Mag., 1961, ser. 8, p. 440.

  26. G. Thomas and J. Nutting:J. Inst. Metals, 1957, vol. 86. p. 7.

    CAS  Google Scholar 

  27. W.J.Plumbridge and D. A. Ryder:Met. Rev., 1969, vol. 3, no. 8.

  28. C. Laird: ASTM, STP 415, p. 131, 1967.

  29. P. R. Swann:Electron Microscopy and the Strength of Crystals, G. Thomas and J. Washburn, eds., p. 861, J. Wiley & Sons, 1963.

  30. B. K. Park,et al.: AFML-TR-70-195, American AF Report, 1970.

  31. T. B. Cox and J. R. Low, Jr.:Met. Trans., 1974, vol. 5, p. 459.

    Article  Google Scholar 

  32. D. S. Thompson and S. A. Levy: AFML-TR-70-171, Wright-Patterson AFB, Ohio, 1970 (as reported in Ref. 8).

  33. C. J. Peel, R. N. Wilson, and P. J. E. Forsyth:Metal Sci. J., 1972, vol. 6, p. 102.

    Article  CAS  Google Scholar 

  34. D. Broek: Ph.D. Thesis, Delft University, 1971.

  35. J. R. Low. Jr., R. H. Van Stone, and R. H. Merchant: NASA Tech. Rept. No. 2, NGR 38-087-003, Carnegie-Mellon University, 1972.

  36. T. B. Cox and J. R. Low: NASA Tech. Rept. No. 3, NGR 38-087-003, Carnegie- Mellon University, 1972 (as reported in Ref. 8).

  37. R. H. Van Stone and J. A. Psioda:Met. Trans. A, 1975, vol. 6A, p. 668.

    Google Scholar 

  38. G. T. Hahn and A. R. Rosenfield:Third Int. Conf. on Fracture, Paper PL-III-211, Munich, 1973.

  39. J. R. Rice and M. A. Johnson:Inelastic Behaviour of Materials, M. F. Kanninen, ed., p. 641, McGraw-Hill, 1970.

  40. J. G. Kaufman, R. L. Moore, and P. E. Schilling:Eng. Fract. Mech., 1971, vol. 2, p. 197.

    Article  Google Scholar 

  41. R. H. Van Stone, R. H. Merchant, and J. R. Low: ASTM, STP 556, p. 53, 1974.

  42. W. W. Gerberich:Exp. Mech., 1964, vol. 4, p. 335.

    Article  Google Scholar 

  43. G. T. Hahn and A. R. Rosenfield: ASTM, STP 432, p. 5, 1968.

  44. J. R. Rice:Third Int. Conf. on Fracture, Paper J-441, Munich, 1973.

  45. R. O. Ritchie, J. F. Knott, and J. R. Rice:J. Mech. Phys. Sol., 1973, vol. 21, p. 395.

    Article  CAS  Google Scholar 

  46. D. Broek:Eng. Fract. Mech., 1973, vol. 5, p. 55.

    Article  CAS  Google Scholar 

  47. J. N. Robinson and A. S. Tetelman:Third Int. Conf. on Fracture, Paper 11-421, Munich, 1973.

  48. S. A. Mohammed and A. S. Tetelman:Ibid., Paper 11-511.

  49. J. S. Ke and H. W. Liu:Eng. Fract. Mech., 1976, vol. 8, p. 425.

    Article  Google Scholar 

  50. J. M. Krafft:Appl. Mater. Res., 1964, vol. 3, p. 88.

    Google Scholar 

  51. P. F. Thomason:Int. J. Fract. Mech., 1971, vol. 7, p. 409.

    Google Scholar 

  52. M. I. Baskes:Eng. Fract. Mech., 1974, vol. 6, p. 11.

    Article  CAS  Google Scholar 

  53. G. Green, R. F. Smith, and J. F. Knott:Mechanics and Mechanisms of Crack Growth, p. 58, British Steel Corporation, Cambridge, 1973.

    Google Scholar 

  54. F. A. Johnson and J. G. Radon:Int. J. Fract. Mech., 1972, vol. 8, p. 21.

    Article  Google Scholar 

  55. A. W. Thompson and P. F. Weihrauch:Scr. Met., 1976, vol. 10, p. 205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrett, G.G., Knott, J.F. The influence of compositional and microstructural variations on the mechanism of static fracture in aluminum alloys. Metall Trans A 9, 1187–1201 (1978). https://doi.org/10.1007/BF02652242

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652242

Keywords

Navigation