Skip to main content
Log in

A mathematical model of the nickel converter: Part I. Model development and verification

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model of the nickel converter has been developed. The primary assumption of the model is that the three phases in the converter are in thermal and chemical equilibrium. All matte, slag, and gas in the converter is brought to equilibrium at the end of each of a series of short time steps throughout an entire charge. An empirical model of both the matte and slag is used to characterize the activity coefficients in each phase. Two nickel sulfide species were used to allow for the modeling of sulfur-deficient mattes. A heat balance is carried out over each time step, considering the major heat flows in the converter. The model was validated by a detailed comparison with measured data from six industrial charges. The overall predicted mass balance was shown to be close to that seen in actual practice, and the heat balance gave a good fit of converter temperature up to the last two or three blows of a charge. At this point, reactions in the converter begin to deviate strongly from “equilibrium,” probably due to the converter reactions coming under liquid-phase mass-transfer control. While the equilibrium assumption does work, it is not strictly valid, and the majority of the charge is probably under gas-phase mass-transfer control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.H. Kellogg:Can. Metall. Q., 1987, vol. 26 (no.4), pp. 285–98.

    CAS  Google Scholar 

  2. S.N. Sinha and M. Nagamori:Metall. Trans. B, 1982, vol. 13B, pp. 461–70.

    Article  CAS  Google Scholar 

  3. J.R. Taylor:Advances in Sulphide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 217–29.

    Google Scholar 

  4. P.C. Chaubal and M. Nagamori:Metall. Trans. B, 1982, vol. 13B, pp. 339–48.

    Article  CAS  Google Scholar 

  5. K. Itagaki and A. Yazawa:Advances in Sulphide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 119–42.

    Google Scholar 

  6. A.A. Bustos, J.K. Brimacombe, and G.G. Richards:Metall. Trans. B, 1986, vol. 17B, pp. 677–85.

    Article  CAS  Google Scholar 

  7. G.G. Richards, K.J. Legard, A.A. Bustos, J.K. Brimacombe, and D. Jorgensen:The Reinhardt Schuhmann Int. Symp. on Innovative Technology and Reactor Design in Extraction Metallurgy, D.R. Gaskell, J.P. Hager, J.E. Hoffmann, andP.J. Mackey, eds., TMS-AIME, Warrendale, PA, 1986, pp. 385–99.

    Google Scholar 

  8. A.A. Bustos, S.W. Ip, G. O’Connell, G.H. Kaiura, and J.M. Toguri:Extractive Metallurgy of Nickel and Copper, G. Tyroller and C. Landholt, eds., TMS, Warrendale, PA, 1988, pp. 335–54.

    Google Scholar 

  9. S. Goto:Copper-Metallurgy-Practice and Theory, IMM, London, 1974, pp. 23–34.

    Google Scholar 

  10. S. Goto: inCopper and Nickel Converters, R.E. Johnson, ed., TMS-AIME, Warrendale, PA, 1979, pp. 33–54.

    Google Scholar 

  11. R. Shimpo, S. Watanabe, S. Goto, and O. Ogawa:Advances in Sulphide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 295–316.

    Google Scholar 

  12. N. Kemori, T. Kimura, Y. Mori, and S. Goto:Pyrometallurgy ’87, IMM, London, 1987, pp. 647–66.

    Google Scholar 

  13. M. Bustos and M. Sanchez:Copper 87, C. Diaz, C. Landolt, and A.A. Luraschi, eds., Metall. Soc. CIM, Chilean Inst. Mining Engineers, Univ. Chile, 1987, vol. 4, pp. 473–87.

    Google Scholar 

  14. S.R. Brinkley:J. Chem. Phys., 1947, vol. 15, pp. 107–10.

    Article  CAS  Google Scholar 

  15. C.W. Bale and J.M. Toguri:Can. Metall Q., 1976, vol. 15 (no.4), pp. 305–18.

    CAS  Google Scholar 

  16. T. Rosenqvist:Advances in Sulphide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 239–55.

    Google Scholar 

  17. H.H. Kellogg:Physical Chemistry in Metallurgy;Proc. of the Darken Conf, R.M. Fisher, R.A. Oriani, and E.T. Turkdogan, eds., U.S. Steel Research Laboratory, Monroeville, PA, 1976, pp. 49–68.

    Google Scholar 

  18. S.L. Lee and J.M. Larrain:Can. Metall. Q., 1980, vol. 19, pp. 183–90.

    Google Scholar 

  19. D.R. Fosnacht, R.P. Goel, and J.M. Larrain:Metall. Trans. B, 1980, vol. 11B, pp. 69–71.

    Article  CAS  Google Scholar 

  20. R.C. Sharma and Y.A. Chang:Metall. Trans. B, 1979, vol. 10B, pp. 103–08.

    Article  CAS  Google Scholar 

  21. R.C. Sharma and Y.A. Chang:Z. Metallkd., 1979, vol. 70 (no.2), pp. 104–08.

    CAS  Google Scholar 

  22. R.C. Sharma and Y.A. Chang:Metall. Trans. B, 1980, vol. 11B, pp. 139–46.

    Article  CAS  Google Scholar 

  23. R.C. Sharma and Y.A. Chang:Metall. Trans. B, 1980, vol. 1 IB, pp. 575–83.

    Article  Google Scholar 

  24. Y.-Y. Chuang, K.-C. Hsieh, and Y.A. Chang:CALPHAD, 1981, vol. 5 (no.4), pp. 277–89.

    Article  CAS  Google Scholar 

  25. Y.-Y. Chuang and Y.A. Chang:Metall. Trans. B, 1982, vol. 13B, pp. 379–85.

    Article  CAS  Google Scholar 

  26. Y.-Y. Chuang and Y.A, Chang:Molten Salt Chemistry and Technology, Molten Salt Committee, Electrochemical Society of Japan, Kyoto, Japan, 1983, pp. 201–08.

    Google Scholar 

  27. Y.-Y. Chuang and Y.A. Chang:2nd Int. Symp. on Metallurgical Slags and Fluxes, TMS-AIME, Warrendale, PA, 1984, pp. 73–79.

    Google Scholar 

  28. Y.-Y. Chuan, K.-C. Hsieh, and Y.A. Chang:Metall. Trans. B, 1985, vol. 16B, pp. 277–85.

    Article  Google Scholar 

  29. R.C. Sharma, J.-C. Lin, and Y.A. Chang:Metall. Trans. B, 1987, vol. 18B, pp. 237–44.

    Article  CAS  Google Scholar 

  30. Y.A. Chang and K.-C. Hsieh:Can. Metall. Q., 1987, vol. 26 (no.4), pp. 311–27.

    Google Scholar 

  31. P.J. Mackey:Can. Metall. Q., 1982, vol. 21, pp.221–600.

    CAS  Google Scholar 

  32. M. Nagamori:Metall. Trans., 1974, vol. 5, pp. 531–3.

    Article  Google Scholar 

  33. M. Nagamori:Metall. Trans., 1974, vol. 5, pp. 539–48.

    Article  CAS  Google Scholar 

  34. R.S. Celmer and J.M. Toguri:Proc. 25th Annual Conf. of Metallurgists, Canadian Institute of Mining and Metallurgy, Halifax, NS, Canada, 1986, pp. 147–63.

    Google Scholar 

  35. J. Szekely and N.J. Themelis:Rate Phenomena in Process Metallurgy, Wiley-Interscience, New York, NY, 1971.

    Google Scholar 

  36. C. Moore:UBC NLE: Zeros of Nonlinear Equations, Computing Centre, University of British Columbia, Vancouver, BC, Canada, 1984.

    Google Scholar 

  37. M. Diaz, C.A. Landolt, A. Vahed, A.E.M. Warner, and J.C. Taylor:Proc. 117th TMS Annual Meeting, Phoenix, AZ, 1988.

    Google Scholar 

  38. A.K. Kyllo: M.A.Sc. Thesis, University of British Columbia, Vancouver, BC, Canada, 1989.

  39. R.E. Johnson, N.J. Themelis, and G.A. Eltringham: inCopper and Nickel Converters, R.E. Johnson, ed., TMS-AIME, Warrendale, PA, 1979, pp. 1–32.

    Google Scholar 

  40. J.K. Brimacombe, A.A. Bustos, D. Jorgensen, and G.G. Richards: inPhysical Chemistry of Extractive Metallurgy, V. Kudryk and Y.K. Rao, eds., TMS-AIME, Warrendale, PA, 1985, pp. 327–51.

    Google Scholar 

  41. T. Kimura, S. Tsuyuguchi, Y. Ojima, Y. Mori, and Y. Ishii:J. Met., 1986, Sept., pp. 38-42.

  42. A.K. Kyllo and G.G. Richards: The University of British Columbia, Vancouver, BC, Canada, unpublished research, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyllo, A.K., Richards, G.G. A mathematical model of the nickel converter: Part I. Model development and verification. Metall Trans B 22, 153–161 (1991). https://doi.org/10.1007/BF02652480

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652480

Keywords

Navigation