Skip to main content
Log in

Effect of evaporation and temperature-dependent material properties on weld pool development

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

This paper evaluates the effect of weld pool evaporation and thermophysical properties on the development of the weld pool. An existing computational model was modified to include vaporization and temperature-dependent thermophysical properties. Transient, convective heat transfer during gas tungsten arc (GTA) welding with and without vaporization effects and variable properties was studied. The present analysis differs from earlier studies that assumed no vaporization and constant values for all of the physical properties throughout the range of temperature of interest. The results indicate that consideration of weld pool vaporization effects and variable physical properties produce significantly different weld model predictions. The calculated results are consistent with previously published experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Trends in Welding Research in the United States, S.A. David, ed., ASM, Metals Park, OH, 1982.

    Google Scholar 

  2. Recent Trends in Welding Science and Technology, S.A. David and J.M. Vitek, eds., ASM, Metals Park, OH, 1990.

    Google Scholar 

  3. Modeling of Casting and Welding Processes, H.D. Brody and D. Apelian, eds., TMS-AIME, Warrendale, PA, 1981.

    Google Scholar 

  4. Modeling and Control of Casting and Welding Processes IV, A.F. Giamei and G.J. Abbaschian, eds., TMS-AIME, Warrendale, PA, 1988.

    Google Scholar 

  5. D. Rosenthal:Weld. J., 1941, vol. 20, pp. 220s-234s.

    Google Scholar 

  6. A.A. Wells:Weld. J., 1952, vol. 31, pp. 263s-267s.

    Google Scholar 

  7. E. Friedman:Weld. J., 1978, vol. 57, pp. 161s-166s.

    Google Scholar 

  8. D.R. Athey:J. Fluid Mech., 1980, vol. 98, pp. 787–801.

    Article  Google Scholar 

  9. S. Kou:Metall. Trans. A, 1981, vol. 12A, pp. 2025–30.

    Google Scholar 

  10. S. Kou and Y. Le:Metall. Trans. A, 1984, vol. 15A, pp. 1165–71.

    Google Scholar 

  11. G.M. Oreper and J. Szekely:J. Fluid Mech., 1984, vol. 147, pp. 53–79.

    Article  Google Scholar 

  12. C. Chan, J. Mazumder, and M.M. Chen:Metall. Trans. A, 1984, vol. 15A, pp. 2175–84.

    CAS  Google Scholar 

  13. S. Kou and D.K. Sun:Metall. Trans. A, 1985, vol. 16A, pp. 203–13.

    CAS  Google Scholar 

  14. R.E. Sundell, S.M. Correa, L.P. Harris, H.D. Solomon, L.A. Wojcik, W.F. Savage, D.W. Walsh, and G.-D. Lo: General Electric Report No. 86SRD013, Schenectady, NY, 1986.

  15. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy:Metall. Trans. A, 1989, vol. 20A, pp. 957–67.

    CAS  Google Scholar 

  16. A. Paul and T. DebRoy:Metall. Trans. B, 1988, vol. 19B, pp. 851–58.

    Article  CAS  Google Scholar 

  17. S.A. Korpela, N. Ramanan, C.L. Tsai, and J.Y. Lee: Research Report, MR881O, Edison Welding Institute, Columbus, OH, May 1988.

    Google Scholar 

  18. S. Kou and Y.H. Wang:Metall. Trans. A, 1986, vol. 17A, pp. 2265–70.

    CAS  Google Scholar 

  19. S. Kou and Y.H. Wang:Weld. J., 1986, vol. 65 (3), pp. 63s-70s.

    Google Scholar 

  20. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J., 1988, vol. 67 (1), pp. 18s-27s.

    Google Scholar 

  21. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J., 1988, vol. 67 (3), pp. 53s-62s.

    Google Scholar 

  22. T. Zacharia, A.H. Eraslan, D.K. Aidun, and S.A. David:Metall. Trans. B, 1989, vol. 20B, pp. 645–59.

    Article  CAS  Google Scholar 

  23. A. Block-Bolten, and T.W. Eagar,:Metall. Trans. B, 1984, vol. 15B (9), pp. 461–69.

    Article  CAS  Google Scholar 

  24. M.E. Thompson and J. Szekely:Int. J. Heat Mass Transfer, 1989, vol. 32 (6), pp. 1007–19.

    Article  Google Scholar 

  25. T. Zacharia, S.A. David, J.M. Vitek, and H.G. Kraus:Metall. Trans. B, 1991, vol. 22B, pp. 243–57.

    Article  CAS  Google Scholar 

  26. J.S. Turner:Buoyancy Effects in Fluids, Cambridge University Press, Cambridge, United Kingdom, 1973.

    Google Scholar 

  27. M. Choi, R. Grief, and M. Salcuden,:Numer. Heat Transfer, 1987, vol. 11, p. 477.

    Article  Google Scholar 

  28. S. Dushman:Scientific Foundations of Vacuum Technique, John Wiley &; Sons, New York, NY, 1962.

    Google Scholar 

  29. C.S. Kim:Thermophysical Properties of Stainless Steels, Argonne National Laboratory, Argonne, IL, Report No. ANL-75-55, 1975.

    Google Scholar 

  30. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy:Weld. J., 1989, vol. 68 (12), pp. 499s-509s.

    Google Scholar 

  31. H.G. Kraus:Weld. J., 1989, vol. 68 (7), pp. 269s-279s.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacharia, T., David, S.A. & Vitek, J.M. Effect of evaporation and temperature-dependent material properties on weld pool development. Metall Trans B 22, 233–241 (1991). https://doi.org/10.1007/BF02652488

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652488

Keywords

Navigation