Skip to main content
Log in

Computational modeling of stationary gastungsten-arc weld pools and comparison to stainless steel 304 experimental results

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1993

Abstract

A systematic study was carried out to verify the predictions of a transient multidimensional computational model by comparing the numerical results with the results of an experimental study. The welding parameters were chosen such that the predictions of the model could be correlated with the results of an earlier experimental investigation of the weld pool surface temperatures during spot gas-tungsten-arc (GTA) welding of Type 304 stainless steel (SS). This study represents the first time that such a comprehensive attempt has been made to experimentally verify the predictions of a numerical study of weld pool fluid flow and heat flow. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a truly deformable surface. Theoretical predictions of the weld pool surface temperature distributions, the cross-sectional weld pool size and shape, and the weld pool surface topology were compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement within ±8 pct for the best theoretical models. The predicted surface profiles were found to agree within ±20 pct on dome height and ±8 pct on weld pool diameter for the best theoretical models. The predicted weld cross-sectional profiles were overlaid on macrographs of the actual weld cross sections, and they were found to agree very well for the best theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. David, J.M. Vitek, and T.L. Hebble:Weld. J., 1987, vol. 66 (10), pp. 289s-300s.

    Google Scholar 

  2. T. Zacharia, S.A. David, J.M. Vitek and T. DebRoy:Metall. Trans. A, 1989, vol. 20A, pp. 957–67.

    CAS  Google Scholar 

  3. C.R. Heiple, and J.R. Roper:Weld. J., 1981, vol. 60 (8), pp. 143s-145s.

    Google Scholar 

  4. C.R. Heiple, and J.R. Roper: inTrends in Welding in the United States, S.A. David, ed., ASM, Metals Park, OH, 1981, p. 489.

    Google Scholar 

  5. C.R. Heiple, and J.R. Roper:Weld. J., 1982, vol. 61 (4), pp. 97s-102s.

    Google Scholar 

  6. C.R. Heiple, J.R. Roper, R.T. Stagner, and J.J. Alden:Weld. J., 1983, vol. 62 (3), pp. 72s-77s.

    Google Scholar 

  7. C.R. Heiple, and P. Burgardt:Weld. J., 1985, vol. 64 (6), pp. 159s-162s.

    Google Scholar 

  8. N.S. Tsai and T.W. Eagar:Proc. Engineering Foundation Conf. on Modeling of Casting and Welding Processes II, J.A. Dantzig and J.T. Berry, eds., TMS-AIME, Warrendale, PA, 1984, pp. 317–28.

    Google Scholar 

  9. D.R. Athey:J. Fluid Mech., 1980, vol. 98, pp. 787–801.

    Article  Google Scholar 

  10. G.M. Oreper and J. Szekely:J. Fluid Mech., 1984, vol. 147, pp. 53–79.

    Article  Google Scholar 

  11. C. Chan, J. Mazumder, and M.M. Chen:Metall. Trans. A, 1984, vol. 15A, pp. 2175–84.

    CAS  Google Scholar 

  12. S. Kou and D.K. Sun:Metall. Trans. A, 1985, vol. 16A, pp. 203–13.

    CAS  Google Scholar 

  13. S. Kou and Y.H. Wang:Metall. Trans. A, 1986, vol. 17A, pp. 2265–70.

    CAS  Google Scholar 

  14. S. Kou and Y.H. Wang:Weld. J., 1986, vol. 65 (3), pp. 63s-70s.

    Google Scholar 

  15. R.E. Sundell, S.M. Correa, L.P. Harris, H.D. Solomon, L.A. Wojcik, W.F. Savage, D.W. Walsh, and G.-D. Lo: General Electric Report No. 86SRD013, Schenectady, NY, 1986.

  16. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J., 1988, vol. 67 (1), pp. 18s-27s.

    Google Scholar 

  17. T. Zacharia, A.H. Eraslan, and D.K. Aidun:Weld. J., 1988, vol. 67 (3), pp. 53s-62s.

    Google Scholar 

  18. A. Paul and T. DebRoy:Metall. Trans. B, 1988, vol. 19B, pp.851–588.

    Article  CAS  Google Scholar 

  19. S.A. Korpela, N. Ramanan, C.L. Tsai, and J.Y. Lee: Research Report, MR8810, Edison Welding Institute, Columbus, OH, May 1988.

    Google Scholar 

  20. CM. Adams:Weld. J., 1958, vol. 37 (5), pp. 210s-215s.

    CAS  Google Scholar 

  21. P. Jhaveri, W.G. Moffat, and CM. Adams:Weld. J., 1962, vol. 41 (1), pp. 12s-16s.

    Google Scholar 

  22. W.F. Hess, L.L. Merrill, E.F. Nippes, and A.P. Bunk:Weld. J., 1943, vol. 22, pp. 377s-422s.

    CAS  Google Scholar 

  23. E.F. Nippes, L.L. Merrill, and W.F. Savage:Weld. J., 1949, vol. 28 (11), pp. 556s-564s.

    Google Scholar 

  24. S. Katayama and A. Matsunawa:Proc. ICALEO 84, 1984, vol. 44, pp. 60–67.

    CAS  Google Scholar 

  25. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy:Weld. J., 1989, vol. 68 (12), pp. 499s-509s.

    Google Scholar 

  26. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy:Weld. J., 1989, vol. 68 (12), pp. 510s-519s.

    Google Scholar 

  27. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy:Metall. Trans. B, 1990, vol. 21B, pp. 600–03.

    Article  CAS  Google Scholar 

  28. H.G. Kraus:Optics Lett., 1986, vol. 11 (12), pp. 773–75.

    Article  CAS  Google Scholar 

  29. H.G. Kraus:Optical Eng., 1987, vol. 26 (12), pp. 1183–90.

    CAS  Google Scholar 

  30. H.G. Kraus:Weld. J., 1989, vol. 68 (7), pp. 269s-279s.

    Google Scholar 

  31. H.G. Kraus:Weld. J., 1987, vol. 66 (12), pp. 353s-359s.

    Google Scholar 

  32. H.G. Kraus:Weld. J., 1989, vol. 68 (3), pp. 84s-91s.

    Google Scholar 

  33. T. Zacharia, A.H. Eraslan, D.K. Aidun, and S.A. David:Metall. Trans. B, 1989, vol. 20B, pp. 645–59.

    Article  CAS  Google Scholar 

  34. A.H. Eraslan, W. Lin, and R.D. Sharp: Oak Ridge National Laboratory Report No. ORNL/TM-8401, 1983.

  35. T. Zacharia, S.A. David, and J.M. Vitek:Metall. Trans. B, 1991, vol. 22B, pp. 233–41.

    Article  CAS  Google Scholar 

  36. C.S. Kim: Argonne National Laboratory, Argonne, IL, Report No. ANL-75-55, 1975.

  37. S. Dushman and J.M. Lafferty:Scientific Foundations of Vacuum Technique, 2nd ed., Wiley, New York, NY, 1962, pp. 691–731.

    Google Scholar 

  38. P. Sahoo, T. DebRoy, and M.J. McNallan:Metall. Trans. B, 1988, vol. 19B, pp. 483–91.

    Article  CAS  Google Scholar 

  39. B.J. Keene, K.C. Mills, J.W. Bryant, and E.D. Hondros:Can. Metall. Q., 1982, vol. 21, p. 393.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02659142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacharia, T., David, S.A., Vitek, J.M. et al. Computational modeling of stationary gastungsten-arc weld pools and comparison to stainless steel 304 experimental results. Metall Trans B 22, 243–257 (1991). https://doi.org/10.1007/BF02652489

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652489

Keywords

Navigation