Skip to main content
Log in

Heat transfer in a direct-fired rotary kiln: I. Pilot plant and experimentation

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1978

Abstract

The characterization of heat flow processes in direct-fired rotary kilns requires detailed measurements of gas, solids and wall temperatures. This paper describes the construction, instrumentation and operation of a 5.5 m long x 0.406 m inside diam kiln designed for such measurements. The heating of inert sand was chosen for experimental study. Methods of calculating heat flows among solids, wall and gas from the measured axial and radial temperatures are presented and the heat balance calculations and other necessary checks on the validity of the data are given. The effects of the kiln operating variables on heat flow rates, and the implications of the results for modelling and scale-up to large kilns are discussed in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Area, m2

Cp :

Heat capacity, J/kg K

D :

Inside diam of kiln, m

F :

Degree of fill of kiln

Gg :

Mass flow rate of gas, g/s

Gs :

Mass flow rate of solids, g/s

H :

Bed depth, m

h :

Heat transfer coefficient, w/m2 K

k :

Thermal conductivity, W/m K

L :

Length coordinate, m

q :

Heat flow rate, W

q:

Average heat flow rate, W

r :

Radius, m

rw :

Inside radius of kiln, m

T :

Temperature, K

T :

Circumferential average temperature, K

Tg :

Average gas temperature defined by Eq. [1] K,

Tg :

Average gas temperature defined by Eq. [2] K,

x :

Axial distance coordinate, m

ε:

Emissivity

σ :

Stefan Boltzmann constant, w/m2K4

Gr :

Grashof number

Pr :

Prandtl number

Reω :

Reynolds number (rotational)

te]a :

air

E, F, F′ :

positions in Fig. 3

g :

gas

l :

loss

o :

outside

r :

reference

s :

solids

sh :

shell

w :

wall

References

  1. F. J. Farago and R. R. Sood: TMS Paper Selection, No. 76–20, TMS-AIME, 1976.

  2. R. R. Sood, R. Clark, and D. M. Stokes: TMS Paper Selection, No. 72–28, TMS-AIME, 1972.

  3. K. R. K. Bhilotra: TMS Paper Selection, No. A73-40, TMS-AIME, 1973.

  4. P. O. Pape, R. D. Frans and G. H. Geiger:Ironmaking and Steelmaking, 1976, vol. 3, pp. 138–45.

    CAS  Google Scholar 

  5. J. G. Sibakin:Yearbook of AISI, 1962, pp. 187–228.

  6. M. J. Fraser and C. R. Grigg:Eng. J., 1965, vol. 48, no. 6, pp. 29–34.

    Google Scholar 

  7. H. E. Cross and F. O. Read:AIME Symp. Mining and Metallurgy of Lead and Zinc, C. H. Cotterill and J. M. Cigan, eds., 1970, vol. II, pp. 918–59.

  8. M. Kashiwada and T. Kumagai:ibid, pp. 409–22.

  9. J. R. Boldt, Jr.:The Winning of Nickel, 1967, Longmans Canada Ltd., Toronto.

    Google Scholar 

  10. K. E. Peray and J. J. Waddell:The Rotary Cernent Kiln, Chemical Publishing Co., Inc., New Kork, 1972.

    Google Scholar 

  11. R. S. Boynton:Chemistry and Technology of Lime and Limestone, Interscience Publishers, New York, 1966.

    Google Scholar 

  12. Chemical Engineers'Handbook, J. H. Perry, ed., 4th ed., McGraw-Hill, New York, 1963, pp. 20–23, 20–25.

    Google Scholar 

  13. M. Imber and V. Paschkis:Radex-Rundschau, 1960, vol. 4, pp. 183–97.

    Google Scholar 

  14. M. Imber and V. Paschkis:Int. J. Heat Mass Transfer, 1962, vol. 5, pp. 623–38.

    Article  Google Scholar 

  15. K. W. Pearce:J. Inst. Fuel, 1973, vol. 46, pp. 363–71.

    Google Scholar 

  16. J. Kern:Int. J. Heat Mass Transfer, 1974, vol. 17, pp. 981–90.

    Article  Google Scholar 

  17. W. Gilbert:Cement and Cement Manufacture, 1932, vol. 5, no. 12, pp. 417–25.

    CAS  Google Scholar 

  18. H. Gygi:Cement and Cement Manufacture, 1938, vol. 11, p. 81.

    Google Scholar 

  19. A. Folliot: Publication Technique No. 70, Centre d'Etudes et de Recherches de l'Industrie des Liants Hydrauliques, Paris, 1955.

    Google Scholar 

  20. P. Weber:Heat Transfer in Rotary Kilns, 1963, Bauverlag GmbH, Wiesbaden, Berlin.

    Google Scholar 

  21. T. G. Bowers and H. L. Read:Chem. Eng. Prog. Symp. Series, 1968, vol. 61, no. 57, pp. 340–46.

    Google Scholar 

  22. B. Tettmar: Fourth Meeting of the Heat Transfer Panel, Doc. nr. G 04/ca/2, I.F.R.F., 1971,IJmuiden.

    Google Scholar 

  23. K. W. Pearce:J. Chem. E. Symp. Series No. 43, 1976, pp. 26–1-26-14.

  24. G. W. J. Wes, A. A. H. Drinkenburg, and S. Stemerding:Powder Tech., 1976, vol. 13 pp. 185–92.

    Article  CAS  Google Scholar 

  25. S. J. Friedman and W. R. Marshall:Chem. Eng. Prog., 1949, vol. 45, no. 9, pp. 573–88.

    CAS  Google Scholar 

  26. C-C. Chen. W-M. Lu, and L-T. Teng:J. Chinese Inst. Chem. Engrs., 1974, vol. 5, pp. 1–6.

    Google Scholar 

  27. J. Lehmberg, M. Hehl, and K. Schügerl: International Conference SPIRE, 1975, Arad, Israel.

  28. L. H. J. Wachters and H. Kramers: Third Symp. Chem. React. Eng. Amsterdam, 1964, pp. 77–86.

  29. A. W. D. Hills and A. Paulin:J Sci. Instr. (J. Phys. E) 1969, Ser. 2, vol. 2, pp. 713–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03257229.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brimacombe, J.K., Watkinson, A.P. Heat transfer in a direct-fired rotary kiln: I. Pilot plant and experimentation. Metall Trans B 9, 201–208 (1978). https://doi.org/10.1007/BF02653685

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653685

Keywords

Navigation