Skip to main content
Log in

The microstructure of chromium-tungsten steels

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Chromium-tungsten steels are being developed to replace the Cr-Mo steels for fusion-reactor applications. Eight experimental steels were produced and examined by optical and electron microscopy. Chromium concentrations of 2.25, 5, 9 and 12 pct were used. Steels with these chromium compositions and with 2 pct W and 0.25 pct V were produced. To determine the effect of tungsten and vanadium, three other 2.25Cr steels were produced as follows: an alloy with 2 pct W and 0 pct V and alloys with 0 and 1 pct W and 0.25 pct V. A 9Cr steel containing 2 pct W, 0.25 pct V, and 0.07 pct Ta also was studied. For all alloys, carbon was maintained at 0.1 pct. Two pct tungsten was required in the 2.25Cr steels to produce 100 pct bainite (no polygonal ferrite). The 5Cr and 9Cr steels were 100 pct martensite, but the 12Cr steel contained about 25 pct delta-ferrite. Precipitate morphology and precipitate types varied, depending on the chromium content. For the 2.25Cr steels, M3C and M7C3 were the primary precipitates; for the 9Cr and 12Cr steels, M23C6 was the primary precipitate. The 5Cr steel contained M7C3 and M23C6. All of the steels with vanadium also contained MC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Klueh and E. E. Bloom:Nucl. Eng. Design/Fusion, 1985, vol. 2, pp. 383–89.

    Article  CAS  Google Scholar 

  2. R. W. Honeycombe:Structure and Strength of Alloy Steels, Climax Molybdenum Company, London, 1974.

    Google Scholar 

  3. N. M. Ghoniem, A. Shabaik, and M. Z. Youssef:Ferritic Alloys for Use in Nuclear Energy Technologies, TMS-AIME, Warrendale, PA, 1984, pp. 201–08.

    Google Scholar 

  4. D. S. Gelles and M. L. Hamilton:J. Nucl. Mater., 1987, vol. 148, pp. 272–78.

    Article  CAS  Google Scholar 

  5. T. Noda, F. Abe, H. Araki, and M. Okada:J. Nucl. Mater., 1986, vol. 141–143, pp. 1102–06.

    Article  Google Scholar 

  6. C. Y. Hsu and T. A. Lechtenberg:J. Nucl. Mater., 1986, vol. 141–143, pp. 1107–12.

    Google Scholar 

  7. D. Dulieu, K. W. Tupholme, and G. J. Butterworth:J. Nucl. Mater., 1986, vol. 141–143, pp. 1097–101.

    Article  Google Scholar 

  8. M. Tamura, H. Hayakawa, M. Tanimura, A. Hishimura, and T. Kondo:J. Nucl. Mater., 1986, vol. 141–143, pp. 1067–73.

    Article  Google Scholar 

  9. R. L. Klueh: Oak Ridge National Laboratory, Oak Ridge, TN, unpublished research, 1987.

  10. L. J. Habraken and M. Economopoulos:Transformation and Hardenability, Climax Molybdenum Company, Ann Arbor, MI, 1967, pp. 69–107.

    Google Scholar 

  11. R. L. Klueh:Martensitic Transformations (COMAT), Japan Institute of Metals, Sendai, Japan, 1987, pp. 601–06.

    Google Scholar 

  12. J. M. Vitek and R. L. Klueh:Metall Trans. A, 1983, vol. 14A, pp. 1047–55.

    Google Scholar 

  13. R. W. K. Honeycombe:Metall. Sci., 1980, vol. 14, pp. 201–14.

    Article  CAS  Google Scholar 

  14. P. R. Wilyman and R. W. K. Honeycombe:Metal. Sci., 1982, vol. 16, pp. 295–303.

    Article  CAS  Google Scholar 

  15. Y. Mishima, R. M. Horn, and V. F. Zackay,Metall. Trans. A., 1980, vol. 11A, pp. 431–40.

    CAS  Google Scholar 

  16. J. A. Todd and P. Li:Metall. Trans. A. 1986, vol. 17A, pp. 1191–202.

    CAS  Google Scholar 

  17. H. I. Aaronson, M. R. Plichta, G. W. Franti, and K. C. Russell:Metall. Trans. A, 1978, vol. 9A, pp. 363–71.

    CAS  Google Scholar 

  18. B. J. Shaw:Research on Chrome-Moly Steel, American Society of Mechanical Engineers, New York, NY, 1984, pp. 117–78.

    Google Scholar 

  19. J. M. Titchmarsh:Inst. Phys. Conf. Ser. No. 78, Institute of Physics, London, 1985, pp. 247–52

    Google Scholar 

  20. R. G. Baker and J. Nutting:J. Iron Steel Inst.., London, 1959, vol. 192, pp. 257–68.

    CAS  Google Scholar 

  21. J. M. Vitek: Oak Ridge National Laboratory, Oak Ridge, TN, unpublished research, 1984.

  22. P. J. Maziasz, R. L. Klueh, and J. M. Vitek:J. Nucl. Mater., 1986, vols. 141–143, pp. 929–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klueh, R.L., Maziasz, P.J. The microstructure of chromium-tungsten steels. Metall Trans A 20, 373–382 (1989). https://doi.org/10.1007/BF02653916

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653916

Keywords

Navigation